Skip to main content
Log in

Changes in partial molar volume and isentropic partial molar compressibility of self-association of purine and caffeine in aqueous solution at 1–1600 bar

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Ultrasound measurements of purine and caffeine in aqueous solution as function of pressure are reported at 25°C and used to calculate the changes in their partial molar volumes and partial molar compressibilities due to self-association. The effect of pressure is to increase the association. The volume changes are negative for the self-association process, becoming less negative with increasing pressure. This is caused by the monomer in the associated state. The partial molar volume of the monomer in the associated state increases with pressure, contrary to what is expected for nonelectrolytes in water. Hydration of the associated monomer must be a key to this increase. The result suggest that dipole-induced dipole interactions is a possible mechanism for the association process and not hydrophobic interactions. The change in the partial molar compressibility of the association is positive, decreasing with increasing pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. O. P. Ts'o,Fine Structure of Proteins and Nucleic Acids, Vol. 4, G. D. Fasman and S. N. Timasheff, eds., (Marcel Dekker, New York, 1970).

    Google Scholar 

  2. P. O. P. Ts'o,Basic Principles in Nucleic Acid Chemistry, Vol. 1, P. O. P. Ts'o, ed., (Academic Press, New York, 1974).

    Google Scholar 

  3. K. H. Scheller, F. Hofstetter, P. R. Mitchell, B. Prijs, and H. Sigel,J. Am. Chem. Soc. 103, 247 (1981).

    Google Scholar 

  4. H. Høiland, A. Skauge, and I. Stokkeland,J. Phys. Chem. 88, 6350 (1984).

    Google Scholar 

  5. U. Gaarz and H.-D. Lüdemann,Ber. Bunsenges. Phys. Chem. 80, 607 (1976).

    Google Scholar 

  6. R. Garnsey, R. J. Boe, R. Mahoney, and T. A. Litovitz,J. Chem. Phys. 50, 5222 (1969).

    Google Scholar 

  7. C. T. Chen and F. J. Millero,J. Acoust. Soc. Amer. 60, 1270 (1976).

    Google Scholar 

  8. C. T. Chen, R. A. Fine, and F. J. Millero,J. Chem. Phys. 66, 2142 (1977).

    Google Scholar 

  9. E. Vikingstad, A. Skauge, and H. Høiland,J. Colloid Interface Sci. 72, 59 (1979).

    Google Scholar 

  10. P. O. P. Ts'o, I. S. Melvin, and A. C. Olson,J. Am. Chem. Soc. 85, 1289 (1963).

    Google Scholar 

  11. F. Garland and S. D. Christian,J. Phys. Chem. 79, 1247 (1975).

    Google Scholar 

  12. S. Kaneshina, M. Tanaka, T. Tomida, and R. Matuura,J. Colloid Interface Sci. 48, 450 (1974).

    Google Scholar 

  13. T. S. Brun, H. Høiland, and E. Vikingstad,J. Colloid Interface Sci. 63, 89 (1978).

    Google Scholar 

  14. H. W. Offen,Rev. Phys. Chem. Jpn. 50, 97 (1980).

    Google Scholar 

  15. A. A. Paladini and G. Weber,Biochem. 20, 2587 (1981).

    Google Scholar 

  16. R. B. Thompson and J. R. Lakowicz,Biochem. 23, 3411 (1984).

    Google Scholar 

  17. P. Drude and W. Nernst,Z. Phys. Chem. 15, 79 (1894).

    Google Scholar 

  18. S. I. Chan, M. P. Schweizer, P. O. P. Ts'o, and G. K. Helmkamp,J. Am. Chem. Soc. 86, 4182 (1964).

    Google Scholar 

  19. M. G. Marenchic and J. M. Sturtevant,J. Phys. Chem. 77, 544 (1973).

    Google Scholar 

  20. H. Sapper and W. Lohman,Biophys. Struct. Mechanism 4, 327 (1978).

    Google Scholar 

  21. R. Lawaczeck and K. G. Wagner,Biopolymers 13, 2003 (1974).

    Google Scholar 

  22. H. Lonneberg, J. Ylikoski, J. Arpalahti, E. Ottoila, and A. Vesala,Acta Chem. Scand. A 39, 171 (1985).

    Google Scholar 

  23. H. Høiland and E. Vikingstad,J. Chem. Soc. Faraday Trans. I 72, 1441 (1976).

    Google Scholar 

  24. H. Høiland, J. A. Ringseth, and T. S. Brun,J. Solution Chem. 8, 779 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stokkeland, I., Skauge, A. & Høiland, H. Changes in partial molar volume and isentropic partial molar compressibility of self-association of purine and caffeine in aqueous solution at 1–1600 bar. J Solution Chem 16, 45–53 (1987). https://doi.org/10.1007/BF00647014

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647014

Key Words

Navigation