Skip to main content
Log in

Phase diagram of alloy crystal in the exhaustively deionized suspensions of binary mixtures of colloidal spheres

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Phase diagrams of liquidlike, alloy crystal-like and amorphous solid-like(AS) structures have been obtained for the exhaustively deionized aqueous suspensions of the binary mixtures of polystyrene or silica spheres. Diameter, polydispersity index (standard deviation of diameter divided by the mean diameter) and size ratio of the binary spheres (diameter of small sphere divided by that of large one) range from 85 to 136 nm, 0.07 to 0.26 and 0.76 to 0.93, respectively. Close-up color photographs of the alloy crystals are taken and the crystal structure has been analysed from reflection spectroscopy. Most of the alloy crystals aresubstitutional solid-solution (sss) type and body-contered cubic lattice structure. Formation of the alloy crystals is attributed to the important role of the expanded electrical double layers in the deionized condition and increase toward unity in the effective size ratio, which is the effective diameter of small sphere including double layer divided by that of large sphere AS structure is formed at the rather high concentrations of two spheres, where the thickness of the electrical double layer is thin and the effective size rado is comparatively small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luck W, Klier M, Wesslau H (1963) Ber Bunsenges Phys Chem 67:75, 84

    Google Scholar 

  2. Vanderhoff W, van de Hul HJ, Tausk RJM, Overbeek JThG (1970) In: Goldfinger (ed) clean Surfaces: Their Prearation and Characterization for Interfacial Studies. Dekker, New York

    Google Scholar 

  3. Hiltner PA, Papir YS, Krieger IM (1971) J Phys Chem 75:1881

    Google Scholar 

  4. Kose A, Ozaki M, Takano K, Kobayashi Y, Hachisu S (1973) J Colloid Interface Sci 44:330

    Google Scholar 

  5. Crandall RS, Williams R (1977) Science 198:293

    Google Scholar 

  6. Mitaku S, Otsuki T, Okano K (1978) Jpn J Appl Phys 17:305

    Google Scholar 

  7. Clark NA, Hurd AJ, Ackerson BJ (1979) Nature 281:57

    Google Scholar 

  8. Lindsay HM, Chaikin PM (1982) J Chem Phys 76:3774

    Google Scholar 

  9. Pieranski P (1983) Contemp Phys 24:25

    Google Scholar 

  10. Pusey PN, van Megen W (1986) Nature 320:340

    Google Scholar 

  11. Okubo T (1988) Acc Chem Res 21:281

    Google Scholar 

  12. Ottewill RH (1989) Langmuir 5:4

    Google Scholar 

  13. Okubo T (1993) Prog Colloid Polym Sci 18:481

    Google Scholar 

  14. Okubo T (1987) Angew Chem Int Ed Engl 26:765

    Google Scholar 

  15. Okubo T, Aotani S (1988) Naturwissenschaften 75:145

    Google Scholar 

  16. Okubo T, Aotani S (1988) Colloid Polym Sci 266:1049

    Google Scholar 

  17. Okubo T (1990) Colloid Polymer Sci 268:1159

    Google Scholar 

  18. Hachisu S, Yoshimura S (1980) Nature 283:188

    Google Scholar 

  19. Yoshimura S, Hachisu S (1983) Prog Colloid Polym Sci 68:59

    Google Scholar 

  20. Yoshimura S, Hachisu S (1985) J Phys (Paris) 46(C3):115

    Google Scholar 

  21. Hachisu S (1990) Phase Transition 21:243

    Google Scholar 

  22. Okubo T (1987) J Chem Phys 87:5528

    Google Scholar 

  23. Shih WY, Smith WH, Aksay IA (1989) J Chem Phys 90:4506

    Google Scholar 

  24. Okubo T (1990) J Chem Phys 93:8276

    Google Scholar 

  25. Murray MJ, Sanders JV (1980) Phil Mag A42:721

    Google Scholar 

  26. Hachisu S, Kose A, Kobayashi Y, Takano K (1976) J Colloid Interface Sci 55:499

    Google Scholar 

  27. Bartlet P, Ottewill RH, Pusey PN (1990) J Chem Phys 93:1299

    Google Scholar 

  28. Bartlet P, Ottewill RH, Pusey PN (1992) Phys Rev Lett 68:3801

    Google Scholar 

  29. Lindsay HM, Chaikin PM (1982) J Chem Phys 76:3774

    Google Scholar 

  30. Pusey PN, van Megen W (1987) Phys Rev Lett 59:2083

    Google Scholar 

  31. Baker JA, Henderson D (1967) J Chem Phys 47:2856

    Google Scholar 

  32. Wadachi M, Toda M (1972) J Phys Soc Jap 32:1147

    Google Scholar 

  33. Hachisu S, Kobayashi Y, Kose A (1973) J Colloid Interface Sci 42:342

    Google Scholar 

  34. Brenner SL (1976) J Phys Chem 80:1473

    Google Scholar 

  35. Takano K, Hachisu S (1977) J Chem Phys 67:2604

    Google Scholar 

  36. Okubo T (1992) Naturwissenschaften 79:317

    Google Scholar 

  37. Okubo T (1993) Colloid Polym Sci 96:61

    Google Scholar 

  38. Okubo T (1994) Langmuir 10:1695

    Google Scholar 

  39. Okubo T (1994) Langmuir 10:3529

    Google Scholar 

  40. Okubo T (1987) Ber Bunsenges Phys Chem 91:1064

    Google Scholar 

  41. Alexander S, Chaikin PM, Grant P, Morales GJ, Pincus P, Hone D (1984) J Chem Phys 80:5776

    Google Scholar 

  42. Okubo T (1988) J Colloid Interface Sci 125:380

    Google Scholar 

  43. Okubo T (1990) Colloid Polym Sci 268:1159

    Google Scholar 

  44. Okubo T (1989) J Chem Phys 90:2408

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okubo, T., Fujita, H. Phase diagram of alloy crystal in the exhaustively deionized suspensions of binary mixtures of colloidal spheres. Colloid Polym Sci 274, 368–374 (1996). https://doi.org/10.1007/BF00654057

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00654057

Key words

Navigation