Skip to main content
Log in

Carburization kinetics of heat-resistant steels

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A series of 21 commercial austenitic heat-resistant alloys was carburized in H2-C3H6 atmospheres which were reducing to Cr2O3 and SiO2 and which provided a carbon activity of one. Reactions were carried out at 900⩽T⩽1100°C and the resulting depth of carburization was measured metallographically. All alloys showed parabolic carburization kinetics after an initial brief period, at low temperatures, of more rapid reaction. The apparent activation energies for carburization are discussed in terms of carbon solubilities and diffusion coefficients. It is concluded that Wagner's theory of internal oxidation is quantitatively applicable to simple alloys but not to alloys which contain additions of reactive elements. The effectiveness of additions of niobium, aluminum, titanium, and silicon is demonstrated and is discussed in the context of Wagner's theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Schnaas and H. J. Grabke,Oxid. Met. 12, 387 (1978).

    Google Scholar 

  2. R. H. Kane,Corrosion 37, 187 (1981).

    Google Scholar 

  3. K. Ledjeff, A. Rahmel, and M. Schorr,Werkst. Korros. 31, 83 (1980).

    Google Scholar 

  4. D. J. Young,High Temperature Technology,1, 101 (1982).

    Google Scholar 

  5. F. N. Rhines,Trans. AIME 137, 246 (1940).

    Google Scholar 

  6. H. E. Bühler, A. Rahmel, and H. J. Schüller,Arch. Eisenhuettenwes. 38, 223 (1967).

    Google Scholar 

  7. R. Benz, J. F. Elliott, and J. Chipman,Metall. Trans. 5, 2235 (1974).

    Google Scholar 

  8. C. Wagner,Z. Elektrochem. 63, 772 (1959).

    Google Scholar 

  9. R. A. Rapp,Corrosion 21, 382 (1965).

    Google Scholar 

  10. T. Wada, H. Wada, J. F. Elliott, and J. Chipman,Metall. Trans. 2, 2199 (1971).

    Google Scholar 

  11. S. K. Bose and H. J. Grabke,Z. Metallkunde 69, 8 (1978).

    Google Scholar 

  12. O. Kubaschewski and C. B. Alcock,Metallurgical Thermochemistry, 5th ed. (Pergamon, Oxford, 1979).

    Google Scholar 

  13. JANAF Thermochemical Tables, 2nd ed., D. R. Stull and H. Prophet eds., U.S. Government Printing Office, Washington, D.C., (1970).

    Google Scholar 

  14. H. Lewis,Br. Corros. J. 3, 166 (1968).

    Google Scholar 

  15. F. Pons, “Corrosion 79,” Paper 130, NACE, Houston, 1979.

    Google Scholar 

  16. E. N. Skinner, J. F. Mason, and J. J. Moran,Corrosion 16, 593t (1960).

    Google Scholar 

  17. C. Wagner,Thermodynamics of Alloys, (Addison-Wesley Publishing Co. Inc., Reading Mass. 1952), p. 51.

    Google Scholar 

  18. G. K. Sigworth and J. F. Elliott,Met. Sci. 8, 298 (1974).

    Google Scholar 

  19. T. Fuwa and J. Chipman,Trans. AIME 215, 708 (1959).

    Google Scholar 

  20. R. P. Smith,J. Amer. Chem. Soc. 70, 2724 (1948).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, G.M., Young, D.J. & Trimm, D.L. Carburization kinetics of heat-resistant steels. Oxid Met 18, 229–243 (1982). https://doi.org/10.1007/BF00656570

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00656570

Key words

Navigation