Skip to main content
Log in

Postbreakaway oxidation kinetics of two ferritic steels

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The time needed to reach breakaway oxidation, weight gain at the breakaway point, and the postbreakaway oxidation rate are three important variables which, along with others, play an important role in causing boiler tube failure. In this paper an attempt has been made to study the behavior of two ferritic steels-21/4Cr-1Mo and 9Cr-1Mo. Postbreakaway oxidation kinetics of these two alloys have been studied at temperatures in the range 900–1100°C in pure oxygen for a short duration (maximum of 3 hr). No breakaway was observed at 900°C under these conditions. Postoxidation kinetics are linear at first, followed by a slower oxidation rate. The results have been substantiated by the postoxidation studies using SEM, EDAX, and X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Moore and T. Raine, Iron and Steel Institute, Special Report No. 69, 136 (1961).

  2. D. Goodison and R. J. Harris,Br. Corros. J. 4, 146 (1969).

    Google Scholar 

  3. J. E. Antill, K. A. Peakall, and J. B. Warburton,Corros. Sci. 4, 146 (1969).

    Google Scholar 

  4. D. R. Holmes, D. Mortimer, and J. Newell, inCorrosion of Steels in CO 2, D. R. Holmes, R. B. Hill, and L. M. Wyatt, eds. (British Nuclear Energy Society, Reading, 1974), p. 151.

    Google Scholar 

  5. R. A. Brierley, inCorrosion of Steels in CO 2, D. R. Holmes, R. B. Hill and L. M. Wyatt, eds. (British Nuclear Energy Society, Reading, 1974), p. 165.

    Google Scholar 

  6. J. Batson and G. O. Lloyd,Corros. J. 15, 77. (1980).

    Google Scholar 

  7. I. Kvernes, M. Oliveira, and P. Kofstad,Corros. Sci. 17, 237 (1977).

    Google Scholar 

  8. D. R. Holmes, R. B. Hill, and L. M. Wyatt, eds.,Corrosion of Steels in CO 2 (British Nuclear Energy Society, Reading, 1974).

    Google Scholar 

  9. J. Brown, inCorrosion of Steels in CO 3, D. R. Holmes, R. B. Hill, and L. M. Wyatt, eds. (British Nuclear Energy Society, 1974), p. 381.

  10. M. H. Hurdus and L. Tomlinson,Br. Corros. J. 13, 158 (1978).

    Google Scholar 

  11. M. G. Cox, B. McEnaney, and V. D. Scott, inCorrosion of Steels in CO 2, D. R. Holmes, R. B. Hill, and L. M. Wyatt, eds. (British Nuclear Energy Society, Reading, 1974), p. 247.

    Google Scholar 

  12. W. W. Smeltzer,Acta Metall. 8, 268 (1960).

    Google Scholar 

  13. G. C. Wood,Corros. Sci. 2, 173 (1961).

    Google Scholar 

  14. P. C. Rowlands, J. C. P. Garrett, F. G. Hicks, S. K. Lister, B. Lloyd, and J. A. Twelves, inCorrosion of Steels in CO 2, D. R. Holmes, R. B. Hill, and L. M. Wyatt, eds. (British Nuclear Energy Society, Reading, 1974), p. 193.

    Google Scholar 

  15. D. Lai, R. J. Borg, M. J. Brabers, J. D. MacKenzie, and C. E. Birchenall,Corrosion 17, 109 (1961).

    Google Scholar 

  16. H. M. McCullough, M. G. Fontana, and F. H. Beck,Trans. Am. Soc. Met. 43, 404 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanna, A.S., Gnanamoorthy, J.B. Postbreakaway oxidation kinetics of two ferritic steels. Oxid Met 18, 315–330 (1982). https://doi.org/10.1007/BF00656574

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00656574

Key words

Navigation