Skip to main content
Log in

Structure transfer from a polymeric melt to the solid state Part III: Influence of knots on structure and mechanical properties of semicrystalline polymers

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Investigations of the influence of crystallization conditions and molecular weight on mechanical properties of melt spum monofilaments have been carried out in previous studies [1, 2].

The present results emphasize the influence of crystallization upon two classes of molecular entanglements present in the melt:

  1. 1)

    mobile entanglements with short life times;

  2. 2)

    long living knots as a superstructure of the entanglement network.

On the other hand, it is shown that the former number of entanglements controls the thickness of the crystalline lamellae. It is pointed out that knots also have a specific influence on morphology. Knots form the amorphous phase of a semicrystalline polymer and are mechanically active. The present model is comparatively discussed in light of Peterlin's plastic deformation model and Kilian's van der Waals Network Theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wunderlich B (1973) Macromolecular Physics. N.Y. Academic Press, London

    Google Scholar 

  2. Keller A (1985) In: Selácek B (ed) Morphology of Polymers, Prac. 17th Europhys Conf Macromol Phys. Berlin de Gruyter, Berlin (1986)

    Google Scholar 

  3. Hoffmann JD, Lauritzen JI (1961) J Res Nat Bur Stand 65 A: 297

    Google Scholar 

  4. Sanchez IC (1975) J Macromol Sci 12:113

    Google Scholar 

  5. Fischer EW (1985) Integration of Fundamental Polymer Science and Technology, L.A. Kleintjens and P.J. Lemstra (Eds.) Elsevier Applied Science Publishers, London & NY, 456

    Google Scholar 

  6. Fischer EW (1978) Pure Appl Chem 50:1319

    Google Scholar 

  7. Stamm M, Fischer EW, Dettenmaier M (1979) P. Covert Farad Disc Chem Soc 68:263

    Google Scholar 

  8. Rault J, Sotton M, Rabourdin C, Robelin E (1980) J de Physique 41:1459

    Google Scholar 

  9. Robelin E, Rousseaux F, Lemonnier M, Rault J (1980) J de Physique 41:1469

    Google Scholar 

  10. Rault J, Robelin E (1982) J de Physique 43:1437

    Google Scholar 

  11. Rault J, Robelin E, Perez G (1983) J Macromol Sci Phys B 22(4):577

    Google Scholar 

  12. Rault J (1986) C R C Critical Reviews in Solid State and Materials Sciences 13:57–93 C R C Press Inc

    Google Scholar 

  13. Holl B, Heise B, Kilian HG (1983) Colloid Polym Sci 261:978–992

    Google Scholar 

  14. Heise B, Kilian HG, Wulff W (1979) Progr Colloid Polym Sci 67:263

    Google Scholar 

  15. Katayama K, Amano T, Nakamura K (1968) Kolloid Zeitschrift und Z f Polymere, Bd226. Heft 2:12521

    Google Scholar 

  16. Bayer RK (1991) Colloid Polym Sci 269:421–432

    Google Scholar 

  17. Bayer RK, Liebentraut F, Meyer T (1992) Colloid Polym Sci 270:331–348

    Google Scholar 

  18. Discussion with Baltá-Calleja FJ

  19. Bayer RK, Baltá-Calleja FJ, Kilian HG (to be published)

  20. Rault J, Robelin-Souffache E (1989), J Polymer Sci B, Vol 27:1349

    Google Scholar 

  21. Capaccio G, Crompton TA, Ward IM (1976) J of Polymer Sci Polymer Phys Ed Vol 14:1641–1658

    Google Scholar 

  22. Mayer J, Schrödi W, Heise B, Kilian HG (1990) Acta Polymerica Nr. 7:363–370

    Google Scholar 

  23. Bayer RK, Knoche G, Sammet D, Wilken D, Schlimmer M (1993) Plaste und Kautshcuk 7:234–243

    Google Scholar 

  24. Paul E, Heise B, Schrödi W, Kilian HG (1991) Progr Colloid Polym Sci 85:12–22

    Google Scholar 

  25. Rault J (1985) C R Acad Sci Paris t,300 Serie II, no. 10:433–436

    Google Scholar 

  26. Comment of the reference of Colloid Polym Sci

  27. Schultz J (1974) Polymer Materials Sci, Prentice Hall, Englewood Cliffs N.J., p 224

    Google Scholar 

  28. Bayer RK, Baltá-Calleja FJ, Lopez Cabarcos E, Zachmann HG, Paulsen A, Brüning F, Meins W (1989) J of Materials Sci 24:2643–2652

    Google Scholar 

  29. Flory PJ (1969) Statistical Mechanics of Chain Molecules John Wiley & Sons, N.Y.London, Sydney, Toronto

    Google Scholar 

  30. Samuels RJ (1965) J Pol Sci Part A, Vol 3:1741

    Google Scholar 

  31. Hoshino S, Powers J, LeGrand DG, Kawai H, Stein RS (1962) J Pol Sci 58:185

    Google Scholar 

  32. Pechold WR, Grossmann HP (1979) Disc Faraday Soc 68:58–77

    Google Scholar 

  33. Peterlin A (1975) Colloid Polym Sci 253, No. 10:809–823

    Google Scholar 

  34. Meinel G, Morosoff N, Peterlin A (1970) J Pol Sci Part A 2, Vol. 8:1723–1740

    Google Scholar 

  35. Baltá-Calleja FJ, Peterlin A (1970) J Macromol Sci Phys B 4(3):519–540

    Google Scholar 

  36. Prox M (1993) Thesis Univ Erlangen FRG

  37. Kilian HG, Schrödi W, Ania F Bayer RK, Baltá-Calleja FJ (1991) Colloid Polym Sci 269:859–866

    Google Scholar 

  38. Corneliussen R, Peterlin A (1967) Angewandte Makromol Chemie 105:193

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayer, R.K. Structure transfer from a polymeric melt to the solid state Part III: Influence of knots on structure and mechanical properties of semicrystalline polymers. Colloid Polym Sci 272, 910–932 (1994). https://doi.org/10.1007/BF00658889

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00658889

Key words

Navigation