Skip to main content
Log in

Free volume microstructure of amorphous polymers at glass transition temperatures from positron annihilation spectroscopy data

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The analysis of annihilation characteristics of ortho-positronium at conventional calorimetric glass transition temperatures for a series of amorphous polymers reveals empirical correlations of average lifetime of o-Ps\({\rm{\bar \tau }}_{{\rm{3g}}} \), and of its product with a relative intensityI 3g with appropriateT DSCg values. These trends in terms of free volume mean that both the average size of free volume hole entityv hg and the fractional free volume grow with increasingT DSCg . The results are discussed considering the chemical microstructure as well as possible mechanisms acting in glass transition. A relation is indicated between geometric and flexibility characteristics of chains and thev hg andf g parameters of free volume microstructure on the one side and potential motional processes responsible for solidification of the amorphous system on the other side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jäckle J (1983) Rep Progr Phys 49:171

    Google Scholar 

  2. Zahlen R (1983) “The Physics of Amorphous Solids”. Wiley, New York

    Google Scholar 

  3. Kovacs AJ (1963) Fortsch Hochpolym Forsch 3:394

    Google Scholar 

  4. Richardson MJ (1978) In: Dawkins JV Ed. “Development in Polymer Characterisation”, Applied Science, London p 205

    Google Scholar 

  5. McKenna GB (1989) In: Both C, Price C Eds. “Comprehensive Polymer Science. Vol 2. Polymer Properties”. Pergamon, Oxford p 311

    Google Scholar 

  6. Voigt-Martin I, Wendorff JH (1985) In: “Encycl Polym Sci” Vol 1. p 789

  7. Goldstein M, Simha R Eds. Ann NY Acad Sci 1976, 279, The Glass Transition and The Nature of The Glassy State

  8. Bendler JT (1989) In: “Encycl Polym Sci and Engn Vol 17, 2nd Ed. Wiley, New York p 1

    Google Scholar 

  9. Scherer GW (1990) J Non-Crystal Solids 123:75

    Google Scholar 

  10. Roe R, Rigby D, Furuya H, Takeuchi H (1992) Comput Polym Sci 2:32

    Google Scholar 

  11. Paul W, Baschnagel J (1994) In: Binder K Ed. “MC and MD Simulations in Polymer Science”, Oxford University press

  12. Fox TG, Flory P (1951) J Appl Phys 21:581

    Google Scholar 

  13. Doolitle AK (1951) J Appl Phys 22:1471

    Google Scholar 

  14. Cohen HH, Turnbull DJ (1959) Chem Phys 31:1164

    Google Scholar 

  15. Bondi AA (1960) “Physical Properties of Molecular Crystals, Liquids and Glasses”, Wiley, New York

    Google Scholar 

  16. Simha R, Boyer RF (1962) J Chem Phys 37:1003

    Google Scholar 

  17. Simha R, Somcynsky T (1969) Macromolecules 2:342

    Google Scholar 

  18. Sharma SC, Mandelkern L, Stehling FC (1972) J Polym Sci Polym Letts 10:345

    Google Scholar 

  19. Boyer RF, Simha R (1973) J Polym Sci Polym Letts 11:33

    Google Scholar 

  20. Haward RN (1973) In: Haward RN Ed. “The Physics of Glassy State” Applied Science, London, p 25

    Google Scholar 

  21. Lipatov Y (1978) Adv Polym Sci 26:64

    Google Scholar 

  22. Grest GS, Cohen MH (1981) Adv Chem Phys 48:455

    Google Scholar 

  23. Robertson RE (1992) In: Bicerano J Ed. “Computational Modelling of Polymers”, Dekker, Midland p 297

    Google Scholar 

  24. Stevens JR (1980) In: Fava RA Ed. “Probe and Label Techniques. Methods of Experimental Physics” Academic, London p 371

    Google Scholar 

  25. Jean YC (1990) Microchem J 42:72

    Google Scholar 

  26. Nakanishi H, Wang SJ, Jean YC (1988) In: Sharma SC Ed. “Positron Annihilation Studies of Fluids”, World Science, Singapore 1988, p 292

    Google Scholar 

  27. Wang YY, Nakanishi H, Jean YC, Sandreczki TC (1990) J Polym Sci B Polym Phys 28:1431

    Google Scholar 

  28. Krištiak J, Bartoš J, Krištiaková K, Šauša O, Bandžuch J (1994) Phys Rev B 49:6601

    Google Scholar 

  29. Simha R, Wilson PS (1973) Macromolecules 6:908

    Google Scholar 

  30. Liu J, Deng Q, Jean YC (1993) Macromolecules 26:7149

    Google Scholar 

  31. Arifov PU, Vasserman SN, Dontsov AA, Tishin SA (1984) Dokl Akad Nauk SSSR 277:889

    Google Scholar 

  32. Stevens JR, Rowe RM (1973) J Appl Phys 44:4328

    Google Scholar 

  33. Hsu FH, Tseng PK, Chuang SY, Chang YL (1979) In: Hasiguiti RR Ed. Proc 5th Int Conf Positron Annihilation

  34. Krištiak J, Bartoš J, Krištiaková K, Šauša O, Bandžuch P (in preparation)

  35. Malhotra BD, Pethrick RA (1983) Macromolecules 16:1175

    Google Scholar 

  36. Kobayashi Y, Zheng W, Meyer EF, McGervey JD, Jamieson JD, Simha R (1989) Macromolecules 22:2302

    Google Scholar 

  37. Stevens JR, Mao AC (1970) J Appl Phys 41:4273

    Google Scholar 

  38. Kluin JE, Yu Z, Vleeshouwers S, McGervey JD, Jamieson AM, Simha R (1992) Macromolecules 25:5089

    Google Scholar 

  39. Kluin JE, Yu Z, Vleeshouwers S, McGervey JD, Jamieson AM, Simha R, Sommer K (1993) Macromolecules 26:1853

    Google Scholar 

  40. Askadskii AA (1977) Uspekhi Khim 46:1122

    Google Scholar 

  41. Simha R, Somcynsky T (1969) Macromolecules 2:342

    Google Scholar 

  42. van Krevelen DU, Hoftyzer PJ “Properties of Polymers. Correlations with Chemical Structure”, Elsevier, Amsterdam 1972

    Google Scholar 

  43. Muruganandam N, Koros WJ, Paul DR (1987) J Polym Sci B Polym Phys 25:1999

    Google Scholar 

  44. Flory PJ (1989) “Statistical mechanics of Chain Molecules”, Hanser, Munich

    Google Scholar 

  45. Wu S (1992) Polym Engn Sci 32:823

    Google Scholar 

  46. Hoare MR (1977) In: Gaskell PH Ed. “The Structure of Non-Crystaline Solids”, Taylor&Francis, London p 175

    Google Scholar 

  47. Tammann G (1993), Der Glasszustand Leopold Voss, Leipzig

    Google Scholar 

  48. Baschnagel J, Binder K (1994) Physica A 204:47

    Google Scholar 

  49. Paul W, Binder K, Batoulis J, Pittel B, Sommer KH (1993) Makromol Chem Macromol Symp 65:1

    Google Scholar 

  50. Kauzman W (1948) Chem Rev 43:219

    Google Scholar 

  51. Helfand E (1984) Science 226:647

    Google Scholar 

  52. Kanaya T, Kaji K, Inoue K (1991) Macromolecules 24:1826

    Google Scholar 

  53. Zemke K, Chmelka BF, Schmidt-Rohr K, Spiess HW (1991) Macromolecules 24:6874

    Google Scholar 

  54. Boyd RH, Gee RH, Han J, Jin Y (1994) J Chem Phys 101:788

    Google Scholar 

  55. Krištiaková K, Bartoš J, Šauša O, Bandžuch P, Krištiak J (in preparation)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dr Bartoš, J. Free volume microstructure of amorphous polymers at glass transition temperatures from positron annihilation spectroscopy data. Colloid Polym Sci 274, 14–19 (1996). https://doi.org/10.1007/BF00658904

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00658904

Key words

Navigation