Skip to main content
Log in

The effectiveness of oxides in reducing sliding wear of alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

During like-on-like reciprocating sliding in air (amplitude 2.5 mm, load 1.5 kg, speed 500 double traversais per minute), the formation of oxides can have considerable influence on the friction and wear characteristics of high-temperature alloys, such as Jethete M152 and Rex 535. In particular, above a certain transition temperature, between 200 and 300°C for these alloys under these conditions, an adherent, smooth wear-protective oxide layer is developed on the load-bearing surfaces. At lower temperatures, oxide debris reduces the extent of metal-metal contact, thereby reducing the friction and wear rate, but does not eliminate it completely. The oxide debris is produced by two processes; one involves transient oxidation of the metal surfaces, removal of such oxide during each transversal, and reoxidation of the exposed metal; the other involves the formation, fracture, comminution, and oxidation of metal debris particles. At temperatures above the transition temperature, the oxide debris is compacted and comminuted between the sliding surfaces to develop the wear-protective oxide layer. This paper considers the reasons for the effectiveness of such oxides in terms of the influence of the hydrostatic pressures generated on plastic deformation of the very fine oxide particles or asperities in the surface. The resulting friction during sliding is less than during metal-metal contact because only limited asperity junction growth occurs before the asperities become sufficiently large and the hydrostatic pressures sufficiently reduced to allow fracture within the oxide-oxide junctions. The oxide-wear debris produced is recompacted into the surface, resulting in only very low wear rates. It has been shown that the number of asperity-asperity contacts during sliding of wear-protective oxide layers is relatively high, typically 5×103/mm2 of apparent contact area, while the mean surface flash temperature rise is low, typically 2°C. Consideration is given to some of the conditions that favor development of wear-protective oxide layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Peterson, J. J. Florek, and R. E. Lee,ASLE Trans. 3, 101 (1960).

    Google Scholar 

  2. D. H. Buckley and R. L. Johnson,ASLE Trans. 3, 93 (1960).

    Google Scholar 

  3. D. S. Lin, F. H. Stott, and G. C. Wood,ASLE Trans. 17, 251 (1974).

    Google Scholar 

  4. F. H. Stott, D. S. Lin, and G. C. Wood,Corr. Sci. 13, 449 (1973).

    Google Scholar 

  5. T. F. J. Quinn,Wear 18, 413 (1971).

    Google Scholar 

  6. F. H. Stott and G. C. Wood,Tribology 11, 211 (1978).

    Google Scholar 

  7. D. J. Barnes, J. E. Wilson, F. H. Stott, and G. C. Wood,Wear 45, 161 (1977).

    Google Scholar 

  8. A. C. Jesper,Proc. Inst. Mech. Eng. 180Pt 3K, Paper 15 (1965).

  9. F. H. Stott, D. S. Lin, G. C. Wood, and C. W. Stevenson,Wear 36, 147 (1976).

    Google Scholar 

  10. J. Glascott, F. H. Stott, and G. C. Wood,Wear 97, 155 (1984).

    Google Scholar 

  11. F. H. Stott, J. Glascott, and G. C. Wood,Wear 101, 311 (1985).

    Google Scholar 

  12. F. H. Stott, J. Glascott, and G. C. Wood,Wear 97, 93 (1984).

    Google Scholar 

  13. J. Glascott, G. C. Wood, and F. H. Stott,Proc. Inst. Mech. Eng. 119, 35 (1985).

    Google Scholar 

  14. F. H. Stott, J. Glascott, and G. C. Wood,J. Phys. D: Appl. Phys. 18, 541 (1985).

    Google Scholar 

  15. F. H. Stott, G. C. Wood, and J. Glascott, submitted for publication.

  16. J. Glascott, Ph.D. Thesis, University of Manchester (1982).

  17. P. W. Bridgeman,J. Appl. Phys. 18, 246 (1947).

    Google Scholar 

  18. D. Tabor,The Hardness of Metals (Clarendon Press, Oxford, 1951).

    Google Scholar 

  19. H. Hencky,Z. Angew. Math. Mech. 3, 241 (1923).

    Google Scholar 

  20. G. C. Wood and T. Hodgkiess,Werkst. Korr. 9, 766 (1972).

    Google Scholar 

  21. F. P. Bowden and C. A. Brookes,Proc. Roy. Soc. A295, 244 (1966).

    Google Scholar 

  22. R. F. King and D. Tabor,Proc. Roy. Soc. A223, 225 (1954).

    Google Scholar 

  23. J. P. A. Tillet,Proc. Phys. Soc. B69, 47 (1956).

    Google Scholar 

  24. F. C. Frank and B. R. Lawn,Proc. Roy. Soc. A299, 291 (1949).

    Google Scholar 

  25. R. M. Davies,Proc. Roy. Soc. A197, 416 (1949).

    Google Scholar 

  26. G. H. Hamilton and L. E. Goodman,J. Appl. Mech. 33, 371 (1966).

    Google Scholar 

  27. D. Tabor,Proc. Roy. Soc. A251, 378 (1959).

    Google Scholar 

  28. J. H. Westbrook,Rev. Hautes Tem. Refract. 3, 47 (1966).

    Google Scholar 

  29. J. F. Archard,Wear 2, 438 (1959).

    Google Scholar 

  30. M. F. Amateau and W. A. Glaeser,Wear 7, 385 (1964).

    Google Scholar 

  31. F. K. Orcutt, H. H. Krauss, and C. M. Allen,Wear 5, 345 (1962).

    Google Scholar 

  32. J. M. Palacios, A. Rincon, and I. Arijmendi,Wear 60, 393 (1980).

    Google Scholar 

  33. T. K. Gupta,J. Math. Sci. 9, 1585 (1974).

    Google Scholar 

  34. F. A. Golightly, F. H. Stott, and G. C. Wood, unpublished work.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glascott, J., Stott, F.H. & Wood, G.C. The effectiveness of oxides in reducing sliding wear of alloys. Oxid Met 24, 99–114 (1985). https://doi.org/10.1007/BF00664227

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00664227

Key words

Navigation