Skip to main content
Log in

The flux-flow hall effect in type II superconductors. An explanation of the sign reversal

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We consider a time-dependent Ginzburg-Landau (TDGL) model modified to take into account two mechanisms responsible for the Hall voltage in superconductors: the usual effect of the magnetic field on the normal current, and the vortex traction by the superflow. For the BCS model of superconductivity, the contribution of the vortex traction is proportional to the energy derivative of the quasiparticle density of states. Our theory gives the correct order of magnitude for the Hall angle in the mixed state. It predicts that the vortex-traction mechanism results in a negative Hall angle for the quasiparticle spectrum with a positive energy derivative of the density of states averaged over the Fermi surface, and vice versa. For the Fermi surface with a complicated shape, the sign of the Hall effect in the mixed state can be different from that in the normal state. If the signs are opposite, the Hall angle changes its sign as a function of the magnetic field belowH c2 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Hagen, C. J. Lobb, R. L. Greene, M. G. Forrester, and J. H. Kang,Phys. Rev. B 41, 11630 (1990).

    Google Scholar 

  2. M. A. González, P. Prieto, D. Oyola, and J. L. Vicent,Physica C 180, 220 (1991).

    Google Scholar 

  3. S. J. Hagen, C. J. Lobb, R. L. Greene and M. Eddy,Phys. Rev. B 43, 6246 (1991).

    Google Scholar 

  4. J. Luo, T. P. Orlando, J. M. Graybeal, X. D. Wu, and R. Muenchausen.Phys. Rev. Lett. 68, 690 (1992).

    Google Scholar 

  5. Z. D. Wang and C. S. Ting,Phys. Rev. Lett. 67, 3618 (1991).

    Google Scholar 

  6. R. A. Ferrell,Phys. Rev. Lett. 68, 2524 (1992).

    Google Scholar 

  7. K. Noto, S. Shinzawa and Y. Muto,Solid State Commun. 18, 1081 (1976).

    Google Scholar 

  8. J. Bardeen and M. J. Stephen,Phys. Rev. 140A, 1197 (1965).

    Google Scholar 

  9. P. Nozières and W. F. Vinen,Philos. Mag. 14, 667 (1966).

    Google Scholar 

  10. N. B. Kopnin and V. E. Kravtsov,Pis'ma Zh. Eksp. Teor. Fiz. 23, 631 (1976) [JETP Lett. 23, 578 (1967)].

    Google Scholar 

  11. N. B. Kopnin and V. E. Kravtsov,Zh. Eksp. Teor. Fiz. 71, 1644 (1976) [Sov. Phys. JETP 44, 861 (1976)].

    Google Scholar 

  12. N. B. Kopnin and M. M. Salomaa,Phys. Rev. B 44, 9667 (1991).

    Google Scholar 

  13. H. Ebisawa,J. Low Temp. Phys. 9, 11 (1972).

    Google Scholar 

  14. G. M. Eliashberg,Zh. Eksp. Teor. Fiz. 61, 1254 (1971) [Sov. Phys. JETP 34, 668 (1972)].

    Google Scholar 

  15. L. P. Gor'kov and N. B. Kopnin,Usp. Fiz. Nauk 116, 413 (1975) [Sov. Phys. Usp. 18, 496 (1976)].

    Google Scholar 

  16. I. A. Larkin and Y. N. Ovchinnikov, inNonequilibrium Superconductivity, D. N. Langenberg and A. I. Larkin, eds. (Elsevier, New York, 1986), p. 493.

    Google Scholar 

  17. K. Maki,Progr. Theor. Phys. 41, 902 (1969).

    Google Scholar 

  18. A. A. Abrikosov,Zh. Eksp. Teor. Fiz. 32, 1442 (1957) [Sov. Phys. JETP 5, 1174 (1957)].

    Google Scholar 

  19. M. Yu. Kuprijanov and K. K. Likharev,Pis'ma Zh. Eksp. Teor. Fiz. 15, 349 (1972).

    Google Scholar 

  20. B. I. Ivlev and N. B. Kopnin,Europhys. Lett. 15, 349 (1991).

    Google Scholar 

  21. L. P. Gor'kov and G. M. Eliashberg,Zh. Eksp. Teor. Fiz. 54, 612 (1968) [Sov. Phys. JETP 27, 328 (1968)].

    Google Scholar 

  22. A. A. Abrikosov and L. P. Gor'kov,Zh. Eksp. Teor. Fiz. 39, 1781 (1960) [Sov. Phys. JETP 12, 1243 (1960)].

    Google Scholar 

  23. A. K. Niessen, F. A. Staas, and C. H. Weijsenfeld,Phys. Lett. 25A, 33 (1967).

    Google Scholar 

  24. A. T. Dorsey,Phys. Rev. B 46, 8376 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopnin, N.B., Ivlev, B.I. & Kalatsky, V.A. The flux-flow hall effect in type II superconductors. An explanation of the sign reversal. J Low Temp Phys 90, 1–13 (1993). https://doi.org/10.1007/BF00682008

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682008

Keywords

Navigation