Skip to main content
Log in

The defect structure of MgO containing trivalent cation solutes: shell model calculations

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have used the HADES program to calculate the energies of various defect aggregates found in MgO containing Al3+ and Fe3+ solutes and compensating cation vacancies. Calculated energies of substitution are compared with heats of solution derived from phasediagram data; from the accuracy of these results, we deduce the validity of the models used for the lattice simulations. We find that our models provide a satisfactory description for Al3+ but are a less precise representation of crystals containing Fe3+; the models used, however, bracket a reasonable range of solute behaviour and important trends are unaffected by reasonable changes in the interionic potentials. The simplest vacancy-solute dimer can have either a 〈1 0 0〉 or 〈1 1 0〉 orientation; the two constituent defects are closest when the dimer has a 〈1 1 0〉 axis, but the 〈1 0 0〉 dimer is more stable because of the large displacement and polarization of the oxygen ion between the trivalent ion and vacancy. Trimers with either orientation are about twice as stable as the corresponding dimers. Complex aggregates of solutes and vacancies, which adopt configurations that form nuclei of the mixed-oxide spinel structure, are even more stable and the stability increases with cluster size. Thus we conclude that such clustering is an important phenomenon at low homologous temperatures. Calculated interstitial formation energies in MgO are large (>10eV) and our results for the activation energies for solute motion are of the order of 2 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Govindarajan, P. W. M. Jacobs andM. A. Nerenberg,J. Phys. C: Solid State Phys. 9 (1976) 3911;10 (1977) 1809.

    Google Scholar 

  2. C. R. A. Catlow, I. D. Faux andM. J. Norgett,ibid 9 (1976) 419. (Also published as AERE Harwell report TP569.)

    Google Scholar 

  3. J. E. Wertz andP. V. Auzins,Phys. Rev. 139 (1965) A1645.

    Google Scholar 

  4. W. C. O'Mara, J. J. Davies andJ. E. Wertz,ibid 179 (1969) 816.

    Google Scholar 

  5. Y. Chen, M. M. Abraham, L. C. Templeton andW. P. Unruh,ibid B11 (1975) 881.

    Google Scholar 

  6. A. M. Glass andT. M. Searle,J. Chem. Phys. 46 (1967) 2092.

    Google Scholar 

  7. B. Henderson andT. P. P. Hall,Proc. Phys. Soc. 90 (1967) 511.

    Google Scholar 

  8. W. Low,Phys. Rev. 105 (1957) 801.

    Google Scholar 

  9. J. E. Wertz andP. V. Auzins,ibid 106 (1957) 484.

    Google Scholar 

  10. J. H. E. Griffiths andJ. W. Orton,Proc. Phys. Soc. (London) 73 (1959) 948.

    Google Scholar 

  11. G. F. Imbusch, A. L. Schawlow, A. D. May andS. Sugano,Phys. Rev. 140 (1965) A830.

    Google Scholar 

  12. A. M. Glass,J. Chem. Phys. 46 (1967) 2080.

    Google Scholar 

  13. J. E. Wertz andP. V. Auzins,J. Phys. Chem. Solids 28 (1967) 1557.

    Google Scholar 

  14. K. N. Woods andM. E. Fine,J. Amer. Ceram. Soc. 52 (1969) 186.

    Google Scholar 

  15. J. J. Davies, S. R. P. Smith andJ. E. Wertz,Phys. Rev. 178 (1969) 608.

    Google Scholar 

  16. W. H. Gourdin, W. D. Kingery andJ. M. Driear,J. Mater. Sci. 14 (1979) 2074.

    Google Scholar 

  17. J. S. Thorp, R. A. Vasquez, C. Adcock andW. Hutton,ibid 11 (1976) 89.

    Google Scholar 

  18. J. E. Wertz, J. W. Orton andP. Auzins,J. Appl. Phys. 335 (1962) 332.

    Google Scholar 

  19. B. Henderson, J. E. Wertz, T. P. P. Hall andR. D. Dowsing,J. Phys. C: Solid State Phys. 4 (1971) 107.

    Google Scholar 

  20. W. Unruh, Y. Chen andM. M. Abraham,Phys. Rev. Letters 30 (1973) 446.

    Google Scholar 

  21. J. E. Wertz, P. Auzins, J. H. E. Griffiths andJ. W. Orton,Discuss. Faraday Soc. 28 (1959) 136.

    Google Scholar 

  22. J. E. Wertz, G. Saville, P. Auzins andJ. W. Orton,J. Phys. Soc. Jap. Suppl. II 18 (1963) 305.

    Google Scholar 

  23. B. J. Wuensch, in “Mass Transport Phenomena in Ceramics”, edited by A. R. Cooper and A. H. Heuer (Plenum, New York, 1975).

    Google Scholar 

  24. W. P. Whitney andV. S. Stubican,J. Amer. Ceram. Soc. 54 (1971) 349.

    Google Scholar 

  25. A. M. Glass andT. M. Searle,J. Chem. Phys. 48 (1968) 1420.

    Google Scholar 

  26. G. W. Weber, W. R. Bitler andV. S. Stubican,J. Amer. Ceram. Soc. 60 (1977) 61.

    Google Scholar 

  27. B. G. Dick andA. W. Overhauser,Phys. Rev. 112 (1958) 90.

    Google Scholar 

  28. A. D. B. Woods, W. Cochran andB. N. Brockhouse,ibid 119 (1960) 980.

    Google Scholar 

  29. M. J. Norgett, AERE report R.7650 (January 1974).

  30. Idem, AERE report R.7780 (July 1974).

  31. Idem, AERE report R.7015 (1972).

  32. M. J. Norgett andR. Fletcher,J. Phys. C: Solid State 3 (1970) L190.

    Google Scholar 

  33. C. H. Woo andM. P. Puls, to be published.

  34. Idem, to be published.

  35. W. H. Gourdin, Ph.D. dissertation, MIT (1977).

  36. C. R. A. Catlow, Ph.D. thesis, University of Oxford (1974).

  37. C. R. A. Catlow andM. J. Norgett,J. Phys. C: Solid State Phys. 6 (1973) 1325.

    Google Scholar 

  38. C. H. Woo, M. P. Puls andM. J. Norgett,J. Physique, Colloq. (Berlin Conference) (September 1976).

  39. M. J. L. Sangster, G. Peckham andD. H. Saunderson,J. Phys. C: Solid State Phys. 3 (1970) 1026.

    Google Scholar 

  40. G. J. Dienes, D. O. Welch, C. R. Fischer, R. D. Hatcher, O. Lazareth andM. Samberg,Phys. Rev. B11 (1975) 3060.

    Google Scholar 

  41. P. T. Wedepohl,Proc. Phys. Soc. 92 (1967) 79.

    Google Scholar 

  42. C. R. A. Catlow andB. E. F. Fender,J. Phys. C: Solid State Phys. 8 (1975) 3267 (Also published as AERE report TP. 604).

    Google Scholar 

  43. Linnett,Trans. Farad. Soc. 64 (1968) 1489.

    Google Scholar 

  44. R. D. Shannon andC. T. Prewitt,Acta Cryst. B 25 (1969) 925.

    Google Scholar 

  45. J. Sherman,Chem. Rev. 11 (1932) 93.

    Google Scholar 

  46. T. C. Waddington, in “Advances in Inorganic Chemistry and Radiochemistry”, Vol. 1, edited by H. J. Emeleus and A. G. Sharpe (Academic Press, New York, 1959) p. 157.

    Google Scholar 

  47. M. F. C. Ladd andW. H. Lee, “Progress in Solid State Chemistry”, Vol. 1, edited by H. Reiss MacMillan, New York, 1964) p. 37.

    Google Scholar 

  48. P. George andD. S. McClure, in “Progress in Inorganic Chemistry”, Vol. 1, edited by F. A. Cotton, (Interscience, New York, 1959) p. 389.

    Google Scholar 

  49. R. A. Swalin, “Thermodynamics of Solids”, 2nd edn. (Wiley, New York, 1972).

    Google Scholar 

  50. A. M. Alper, R. N. McNally, P. H. Ribbe andR. C. Doman,J. Amer. Ceram. Soc. 45 (1962) 263.

    Google Scholar 

  51. H. S. Roberts andH. E. Merwin,Amer. J. Sci. 21 (1931) 145.

    Google Scholar 

  52. A. Navrotsky, in “International Review of Science. Transition Metals Part I: Inorganic Chemistry Series Two” Vol. 5, edited by D. W. A. Sharp, 29ff.

  53. W. C. Mackrodt andR. F. Stewart,J. Phys. C. Solid State Phys. 10 (1977) 1431.

    Google Scholar 

  54. R. F. Stewart andW. C. Mackrodt,J. Phys. (Paris) Colloq. 7 (1976) 247.

    Google Scholar 

  55. A. Briggs,J. Mater. Sci. 10 (1975) 729.

    Google Scholar 

  56. Idem, ibid 10 (1975) 737.

    Google Scholar 

  57. A. Briggs andD. H. Bowen, “Mass Transport in Oxides”, N.B.S. publication no. 296, edited by J. B. Wactman, A. D. Franklin (1967).

  58. W. D. Kingery, H. K. Bowen andD. R. Uhlmann, in “Introduction to Ceramics”, 2nd edn. (Wiley, New York, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gourdin, W.H., Kingery, W.D. The defect structure of MgO containing trivalent cation solutes: shell model calculations. J Mater Sci 14, 2053–2073 (1979). https://doi.org/10.1007/BF00688410

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00688410

Keywords

Navigation