Skip to main content
Log in

Stress-relaxation technique for deformation studies in four-point bend tests: application to polycrystalline ceramics at elevated temperatures

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The advantages of the stress-relaxation technique can be effectively realized by applying the procedure to conventional four-point bend tests usually employed in the deformation studies of ceramic materials. A test system and procedure for determining plastic strain rate-stress relationships at elevated temperatures (up to 1600° C) by the stress-relaxation method is described. An analysis to calculate true plastic strains and stresses from measured deflections and loads is presented and it is shown that such an analysis requires minimum assumptions regarding the materials behaviour. Preliminary results obtained on an iron-doped MgO specimen are discussed and compared with the constant load test results obtained on identical specimens. Sources of error in the four-point bend stressrelaxation tests and the methods to minimize them are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Feltham,Phil. Mag. 6 (1961) 259.

    Google Scholar 

  2. F. Guiu andP. L. Pratt,Phys. Stat. Sol 6 (1964) 3.

    Google Scholar 

  3. D. Lee andE. W. Hart,Met. Trans. 2 (1971) 1245.

    Google Scholar 

  4. E. W. Hart, C. -Y. Li, H. Yamada andG. L. Wire, in “Constitutive equations in Plasticity”, edited by A. S. Argon (MIT Press, Cambridge, Mass, (1975).

    Google Scholar 

  5. D. P. Williams andA. G. Evans,J. Test. Eval. 1 (1973) 264.

    Google Scholar 

  6. A. V. Virkar andR. S. Gordon,J. Amer. Ceram. Soc. 59 (1976) 68.

    Google Scholar 

  7. G. R. Terwilliger, H. K. Bowen andR. S. Gordon,ibid 53 (1970) 241.

    Google Scholar 

  8. A. H. Heur, R. M. Cannon andN. J. Tighe, in “Ultrafine-Grain Ceramics”, edited by J. J. Burke, N. L. Reed and V. Weiss (Syracuse University Press, Syracuse, New York, 1970) p. 339.

    Google Scholar 

  9. J. T. A. Roberts,Acta Met. 22 (1974) 873.

    Google Scholar 

  10. P. A. Lessing, Ph.D. Thesis, University of Utah (1976).

  11. E. W. Hart,Acta Met. 18 (1970) 599.

    Google Scholar 

  12. I. Finnie andW. R. Heller, “Creep of Engineering Materials” (McGraw-Hill, New York, 1959) pp. 135–7.

    Google Scholar 

  13. G. W. Hollenberg, G. R. Terwilliger andR. S. Gordon,J. Amer. Ceram. Soc. 54 (1971) 196.

    Google Scholar 

  14. A. G. Evans andT. G. Langdon,Prog. Mat. Sci. 21 (1976) 386.

    Google Scholar 

  15. J. B. Bilde-Sörensen,J. Amer. Ceram. Soc. 58 (1975) 70.

    Google Scholar 

  16. R. T. Tremper, R. A. Giddings, J. D. Hodge andR. S. Gordon ibid 57 (1974) 421.

    Google Scholar 

  17. R. S. Gordon andJ. D. Hodge,J. Mater. Sci. 10 (1975) 200.

    Google Scholar 

  18. P. A. Lessing andR. S. Gordon, in “Deformation in Ceramic Materials”, edited by R. C. Bradt and R. E. Tressler (Plenum Press, New York, 1975) 271.

    Google Scholar 

  19. J. D. Hodge, P. A. Lessing andR. S. Gordon,J. Mater. Sci. 12 (1977) 159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shetty, D.K., Gordon, R.S. Stress-relaxation technique for deformation studies in four-point bend tests: application to polycrystalline ceramics at elevated temperatures. J Mater Sci 14, 2163–2171 (1979). https://doi.org/10.1007/BF00688422

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00688422

Keywords

Navigation