Skip to main content
Log in

Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A new genus of methanogenic bacteria is described, which was isolated from a mesophilic sewage digester. It is most probably the filamentous bacterium, earlier referred to asMethanobacterium soehngenii, “fat rod” or “acetate organism”. The single non-motile, non-sporeforming cells are rod-shaped (0.8×2 μm) and are normally combined end to end in long filaments, surrounded by a sheath-like structure. The filaments form characteristic bundles.Methanothrix soehngenii decarboxylates acetate, yielding methane and carbon dioxide. Other methanogenic substrates (H2−CO2, formate, methanol, methylamines) are not used for growth or methane formation. Formate is split into hydrogen and carbon dioxide. The temperature optimum for growth and methane formation is 37°C and the optimal pH range is 7.4–7.8. Sulfide and ammonia serve as sulfur and nitrogen source respectively. Oxygen completely inhibits growth and methane formation, but the bacteria do not loose their viability when exposed to high oxygen concentrations. 100 mg/l vancomycin showed no inhibition of growth and methanogenesis. No growth and methane formation was observed in the presence of: 2-bromoethanesulfonic acid, viologen dyes, chloroform, and KCN. The bacterium has a growth yield on acetate of 1.1–1.4 g biomass per mol acetate. The apparent “K S ” of the acetate conversion system to methane and carbon dioxide is 0.7 mmol/l. The DNA base composition is 51.9 mol% guanine plus cytosine. The nameMethanothrix is proposed for this new genus of filamentous methane bacterium. The type species,Methanothrix soehngenii sp. nov., is named in honor of N. L. Söhngen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth ofMethanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791

    Google Scholar 

  • Balch WE, Wolfe RS (1979) Specifity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid) J Bacteriol 137:256–263

    Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43:260–296

    Google Scholar 

  • Baresi L, Wolfe RS (1981) Levels of coenzyme F420, coenzyme M, hydrogenase, and methylcoenzyme M methylreductase in acetategrownMethanosarcina. Appl Environ Microbiol 41:388–391

    Google Scholar 

  • Barker HA (1936) Studies upon the methane-producing bacteria. Arch Mikrobiol 7:420–438

    Google Scholar 

  • Belyaev SS, Finkel'shtein ZI, Ivanov MV (1975) Intensity of bacterial methane formation in ooze deposits of certain lakes. Microbiology 44:272–275

    Google Scholar 

  • Boone DR, Bryant MP (1980) Propionate-degrading bacterium,Synthrophobacter wolinii, sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632

    Google Scholar 

  • Bryant MP (1972) Commentary on the Hungate technique, for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328

    Google Scholar 

  • Buswell AM, Hatfield WD (1936) Anaerobic fermentations. Ill State Wat Survey Bull 32:59–65

    Google Scholar 

  • Cappenberg TE (1976) Methanogenesis in the bottom deposits of a small stratified lake, in HG Schlegel, G Gottschalk, N Pfennig (eds) Microbial formation and utilization of gases (H2, CH4, CO). Verlag Goltze KG. Göttingen, pp 125–134

    Google Scholar 

  • Cappenberg TE, Prins H (1974) Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh water lake. III. Experiments with14C-labelled substrates. Antonie van Leeuwenhoek J Microbiol Serol 40:457–469

    Google Scholar 

  • Colvin JR, Sowden LC, van den Berg L (1979) The ultrastructure of the major species of an enriched methanogenic culture utilizing acetic acid. Can J Microbiol 25:826–832

    Google Scholar 

  • Ferry JG, Wolfe RS (1976) Anaerobic degradation of benzoate to methane by a microbial consortium. Arch Microbiol 107:33–40

    Google Scholar 

  • Godsy EM (1980) Isolation ofMethanobacterium bryantii from a deep aquifier by using a novel broth-antibiotic disc method. Appl Environ Microbiol 39:1074–1075

    Google Scholar 

  • Groenewege J (1920) Bakteriologische Untersuchungen über biologische Reinigung. Med Burg Geneesk Dienst 1:67–125

    Google Scholar 

  • Gunsalus RP (1977) The methyl-coenzyme M reductase system inMethanobacterium thermoautotrophicum. Thesis, University of Illinois, Urbana-Champaign

    Google Scholar 

  • Gusalus RP, Wolfe RS (1980) Methyl coenzyme M reductase fromMethanobacterium thermoautotrophicum. J Biol Chem 255:1891–1895

    Google Scholar 

  • Hammes WP, Winter J, Kandler O (1979) The sensitivity of the pseudomurein-containing genusMethanobacterium to inhibitors of murein synthesis. Arch Microbiol 123:275–279

    Google Scholar 

  • Healy JB, Young LY, Reinhard M (1980) Methanogenic decomposition of ferulic acid, a model lignin derivative. Appl Environ Microbiol 39:436–444

    Google Scholar 

  • Hilpert R, Winter J, Hammes WP, Kandler O (1981) Sensitivity of archaebacteria to autibiotics. Zbl Bakt 1. Abt Orig C 2:11–21

    Google Scholar 

  • Holdemann LV, Moore WEC (ed) (1972) Anaerobe laboratory manual. Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  • Hoppe-Seyler F (1876) Über die Processe der Gährungen und ihre Beziehung zum Leben der Organismen. Pflügers Arch ges Physiol 12:1–17

    Google Scholar 

  • Hungate RE (1950) The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–49

    Google Scholar 

  • Huser BA (1981) Methanbildung aus Acetat: Isolierung eines neuen Archaebakteriums. Thesis Nr. 6750, Swiss Federal Institute of Technology, Zürich

    Google Scholar 

  • Hutten TJ, de Jong MH, Peeters BPH, van der Drift Ch, Vogels GD (1981) Coenzyme M derivatives and their effects on methane formation from carbon dioxide and methanol by cell extracts ofMethanosarcina barkeri. J Bacteriol 145:27–34

    Google Scholar 

  • Jeris JS, McCarty PL (1965) The biochemistry of methane fermentation using C14 tracers. J Wat Poll Contr Fed 37:178–192

    Google Scholar 

  • Kaspar HF, Wuhrmann K (1978) Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Appl Environ Microbiol 36:1–7

    Google Scholar 

  • Khan AW, Mes-Hartree M (1981) Metabolism of acetate and hydrogen by a mixed population of anaerobes capable of converting cellulose to methane. J Appl Bacteriol 50:283–288

    Google Scholar 

  • Lawrence AW, McCarty PL (1969) Kinetics of methane fermentation in anaerobic treatment. J Wat Poll Cont Fed 41:1–17

    Google Scholar 

  • Mackie RI, Bryant MP (1981) Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and CO2 to methanogenesis in cattle waste at 40 and 60°C. Appl Environ Microbiol 41:1363–1373

    Google Scholar 

  • Mah RA, Hungate RE, Ohwaki K (1976) Acetate, a key intermediate in methanogenesis, in: HG Schlegel, J Barnea (eds) Microbial, energy conversion. E. Goltze KG, Göttingen, pp 97–106

    Google Scholar 

  • Mah RA, Smith MR, Baresi L (1978) Studies on an acetate-fermenting strain ofMethanosarcina. Appl. Environ Microbiol 35:1174–1184

    Google Scholar 

  • McBride BC, Wolfe RS (1971) A new coenzyme of methyl-transfer, coenzyme M. Biochem 10:2317–2324

    Google Scholar 

  • McInerney MJ, Bryant MP, Pfennig N (1979) Anaerobic bacterium that degrades fatty acids in syntrophic, association with methanogens. Arch Microbiol 122:129–135

    Google Scholar 

  • McInerney MJ, Mackie RI, Bryant MP (1981) Syntrophic association of a butyrate-degrading bacterium andMethanosarcina enriched from bovine rumen fluid. Appl Environ Microbiol 41:826–828

    Google Scholar 

  • Mountfort DO, Asher RA (1978) Changes in proportions of acetate and carbon dioxide used as methane precursors during the anaerobic digestion of bovine waste. Appl Environ Microbiol 35:648–654

    Google Scholar 

  • Mylroie RL, Hungate RE (1954) Experiments on the methane bacteria in sludge. Can J Microbiol 1:55–64

    Google Scholar 

  • Pretorius WA (1972) The effect of formate on the growth of acetate utilizing methanogenic bacteria. Wat Res 6:1213–1217

    Google Scholar 

  • Roberton AM, Wolfe RS (1970) Adenosine triphosphate pools inMethanobacterium. J Bacteriol 102:43–51

    Google Scholar 

  • Schnellen CGTP (1947) Onderzoekingen over de Methaangisting. Proefschrift, Technische Hoogeschool, Delft

    Google Scholar 

  • Smit J (1930) Die Gärungssarcinen. Eine Monographie. Pflanzenforschung 14:1–59

    Google Scholar 

  • Smith PH (1966) The microbial ecology of sludge methanogenesis. Devel Ind Microbiol 7:156–161

    Google Scholar 

  • Smith PH, Mah RA (1966) Kinetics of acetate metabolism during sludge digestion. Appl Microbiol 14:368–371

    Google Scholar 

  • Smith MR, Mah RA (1978) Growth and methanogenesis byMethanosarcina strain 227 on acetate and methanol. Appl Environ Microbiol 36:870–879

    Google Scholar 

  • Smith MR, Zinder SH, Mah RA (1980) Microbial methanogenesis from acetate. Process Biochem 15:34–39

    Google Scholar 

  • Söhngen NL (1906) Het ontstaan en verdwijnen van waterstof en methaan onder den invloed van het organische leven. Proefschrift. Technische Hoogeschool, Delft

    Google Scholar 

  • Stackebrandt E, Kandler O (1979) Taxonomy of the genusCellulomonas based on phenotypic characters and deoxyribonucleic acid-deoxyribonucleic acid homology, and proposal of seven neotype strains. Int J Syst Bacteriol 29:273–282

    Google Scholar 

  • Stackebrandt E, Seewaldt E, Ludwig W, Schleifer K-H, Huser BA (1982) Classification ofMethanothrix soehngenii, a new methanogenic archaebacterium. Zbl Bakt Hyg 1. Abt Orig C, in press

  • Takai Y (1970) The mechanism of methane fermentation in flooded paddy soil. Soil Sci Plant Nutr 16:238–244

    Google Scholar 

  • Takai Y, Koyama T, Kamura T (1963) Microbial metabolism in reduction process of paddy soils. Soil Sci and Plant Nutr 9:1–5

    Google Scholar 

  • Takamiya A (1942) Über die Formicodehydrase vonEscherichia coli. Acta Phytochim 13:1–9

    Google Scholar 

  • Toerien DF, Thiel PG, Pretorius WA (1971) Substrate flow in anaerobic digestion. Adv Wat Poll Res 11:II 29/1–29/7

    Google Scholar 

  • van den Berg L, Patel GB, Clark DS, Lentz CP (1976) Factors affecting rate of methane formation from acetic acid by enriched methanogenic cultures. Can J Microbiol 22:1312–1319

    Google Scholar 

  • Weimer PJ, Zeikus JG (1978) Acetate metabolism inMethanosarcina barkeri. Arch Microbiol 119:175–182

    Google Scholar 

  • Winfrey MR, Zeikus JG (1979) Anaerobic metabolism of immediate methane precursors in Lake Mendota. Appl Environ Microbiol 37:244–253

    Google Scholar 

  • Woese CR (1981) Archaebacteria. Scient Am 244:94–106

    Google Scholar 

  • Wolfe RS (1971) Microbial formation of methane, in: AH Rose, JF Wilkinson (eds) Advances in microbiological physiology. Academic Press Inc., New York, vol 6, pp 107–146

    Google Scholar 

  • Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts J Biol Chem 238:2882–2886

    Google Scholar 

  • Zehnder AJB, Brock TD (1979) Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol 137:420–432

    Google Scholar 

  • Zehnder AJB, Huser B, Brock TD (1979) Measuring radioactive methane with the liquid scintillation counter. Appl Environ Microbiol 37:897–899

    Google Scholar 

  • Zehnder AJB, Huser BA, Brock, TD, Wuhrmann K (1980) Characterization of an acetate-decarboxylating, non-hydrogenoxidizing methane bacterium. Arch Microbiol 124:1–11

    Google Scholar 

  • Zeikus JG, Weimer PJ, Nelson DR, Daniels L (1975) Bacterial methanogenesis: Acetate as a methane precursor in pure culture. Arch Microbiol 104:129–134

    Google Scholar 

  • Zinder SH, Mah RA (1979) Isolation and characterization of a thermophilic strain ofMethanosarcina unable to use H2−CO2 for methanogenesis. Appl Environ Microbiol 38:996–1008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huser, B.A., Wuhrmann, K. & Zehnder, A.J.B. Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 132, 1–9 (1982). https://doi.org/10.1007/BF00690808

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00690808

Key words

Navigation