Skip to main content
Log in

Crystal growth of manganese silicide, MnSi∼1.73 and semiconducting properties of Mn15Si26

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Boules of the most silicon-rich silicide of manganese, MnSi∼1.73, were grown by the Bridgman method in the composition range from 62.96 to 63.64 at% Si. There are plate-like MnSi precipitates parallel to thec-plane of Mn15Si26 matrix in all boules except at their upper and lower ends. The amount of the MnSi precipitates was about 2 vol%. Measurements of electrical resistivity, Hall coefficient, and thermoelectric power of the boules were made in the temperature range from 77 to 1200 K. Thermoelectronic properties of Mn15Si26 were estimated on the basis of the distribution state of MnSi precipitates in the boule by assuming that metallic MnSi and semiconducting Mn15Si26 alternately crystallized in lamellae. Although the resistivities and thermoelectric powers measured in thec- anda-axis directions of Mn15Si26 showed anisotropy, the former were proportional to exp (4073/T) in the intrinsic region in both directions. The Hall coefficients showed isotropy over the whole temperature range. The degenerate holeconcentration of Mn15Si26 was determined to be 2.1×1027 m−3. Hall mobilities of Mn15Si26 in both thec- anda-axis directions obey aT −3/2-law above 600K. The Hall coefficient calculated from this relationship was in good agreement with the one found for Mn15Si26 in the intrinsic region. The effective-hole masses of Mn15Si26 along thec- anda-axis were found to be, respectively, 15 and 11 times larger than those of a free electron. Assuming that acoustic lattice scattering is dominant and that carriers obey Fermi-Dirac statistics, the temperature dependence of the calculated thermoelectric power was in reasonable agreement with the one estimated for Mn15Si26 in the temperature range from 400 to 1200K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Kieffer, F. Benesovsky andE. Honak,Z. Anorg. Allg. Chem. 268 (1951) 191.

    Google Scholar 

  2. R. Kieffer, F. Benesovsky andC. Konopiky,Ber. Deut. Keram. Ges. 31 (1954) 223.

    Google Scholar 

  3. A. W. Searcy,J. Amer. Ceram. Soc. 40 (1957) 417.

    Google Scholar 

  4. P. V. Gel'd,Zh. Tekh. Fiz. 27 (1957) 113.

    Google Scholar 

  5. E. N. Nikitin,ibid. 28 (1958) 23, 26.

    Google Scholar 

  6. V. S. Neshpor andV. I. Yupko,Poroshkovaya Metallurgiya 3 (1963) 55.

    Google Scholar 

  7. B. Boren,Arkiv Kemi. Min. Geol. 11A (1933) 1.

    Google Scholar 

  8. M. Hansen, “Constitution of Binary Alloys” (McGraw-Hill Book Co., New York, 1959) p. 953.

    Google Scholar 

  9. V. A. Korshunov, F. A. Sidorenko, P. V. Gel'd andK. H. Davydov,Fiz. Metal. Metalloved. 12 (1961) 277.

    Google Scholar 

  10. L. D. Dudkin andE. S. Kuznetsova,Poroshkovaya Metallurgiya 1 (1962) 20.

    Google Scholar 

  11. O. Schwomma, H. Nowotny andA. Wittman,Monatsh. Chem. 94 (1963) 681.

    Google Scholar 

  12. Y. Fujino, D. Shinoda, S. Asanabe andY. Sasaki,Jap. J. Appl. Phys. 3 (1964) 431.

    Google Scholar 

  13. F. Laves andH. J. Wallbaum,Z. Kristallogr. A101 (1939) 78.

    Google Scholar 

  14. O. Schwomma, A. Preisinger, H. Nowotny andA. Wittman,Monatsh. Chem. 95 (1965) 1527.

    Google Scholar 

  15. A. Boren, “Borides, Silicides and Phosphides” edited by B. Aronsson, R. Lundslrom and S. Rundquist (Methuen and Co., London and New York, 1965).

    Google Scholar 

  16. H. W. Knott, M. H. Mueller andL. Heaton,Acta Cryst. 23 (1967) 549.

    Google Scholar 

  17. G. Zwilling andH. Nowotny,Monatsh. Chem. 102 (1971) 672.

    Google Scholar 

  18. O. G. Karpinskii andB. A. Evseev,Izd. Akad. Nauk SSSR, Neorg. Materialy 5 (1969) 525.

    Google Scholar 

  19. L. D. Ivanova, N. Kh. Abrikosova, E. I. Elagina andV. D. Khvostikova,ibid. 5 (1969) 1933.

    Google Scholar 

  20. N. Kh. Abrikosova andL. D. Ivanova,ibid. 10 (1974) 1016.

    Google Scholar 

  21. L. M. Levinson, General Electric Technical Information Series Number 72CRD111, March, 1972, p. 1.

  22. T. Kojima andI. Nishida,Jap. J. Appl. Phys. 14 (1975) 141.

    Google Scholar 

  23. Idem, J. Crystal Growth 47 (1979) 589.

    Google Scholar 

  24. I. Kawasumi, I. Nishida, K. Masumoto andM. Sakata,Jap. J. Appl. Phys. 15 (1976) 1405.

    Google Scholar 

  25. V. A. Korshunov andP. V. Gel'd,Fiz. Metal. Metalloved. 11 (1961) 945.

    Google Scholar 

  26. D. Shinoda andS. Asanabe,J. Phys. Soc. Jap. 21 (1966) 555.

    Google Scholar 

  27. W. B. Bienert andE. A. Strabek, Proceedings of the IEEE/AIAA Thermoelectric Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1966) p. 10.

    Google Scholar 

  28. B. K. Voronov, L. D. Dudkin andN. N. Trusova,Kristallografiya 12 (1967) 519.

    Google Scholar 

  29. E. N. Nikitin, V. I. Tarasov, A. A. Andreev andL. N. Shumilova,Fiz. Tverd. Tela 11 (1969) 2389.

    Google Scholar 

  30. E. N. Nikitin, V. I. Tarasov andP. V. Tmarin,ibid. 11 (1969) 234.

    Google Scholar 

  31. E. N. Nikitin andV. I. Tarasov,ibid. 13 (1971) 2938.

    Google Scholar 

  32. I. Nishida,J. Mater. Sci. 7 (1972) 435.

    Google Scholar 

  33. E. N. Nikitin, V. I. Tarasov andV. K. Zaitsev,Fiz. Tverd. Tela 15 (1973) 1254.

    Google Scholar 

  34. V. K. Zaitsev, V. I. Tarasov andA. A. Adilbekov,ibid. 17 (1975) 581.

    Google Scholar 

  35. V. I. Tarasov, E. N. Nikitin andL. N. Shumilova,Izd. Akad. Nauk SSSR, Neorg. Materialy 11 (1975) 1038.

    Google Scholar 

  36. P. V. Gel'd andF. A. Sidorenko, “Silitsid Perekhodnikh Metallov Chetvertogo Perioda (English title: Transition Metal Silicides of the Fourth Period) (Metallurgiya, Moskva, 1971) p. 365, 497.

    Google Scholar 

  37. S. Asanabe,J. Phys. Soc. Jap. 20 (1965) 933.

    Google Scholar 

  38. T. Sakurai, “Crystal Structure Analysis II” (Crysallographic Society of Japan, Tokyo, 1967) p. 99.

    Google Scholar 

  39. E. H. Putley, “The Hall Effect and Related Phenomena” (Butterworth and Co., London, 1960) p. 61.

    Google Scholar 

  40. T. Sakata andT. Tokushima,Trans. Nat. Res. Inst. Metals 5 (1963) 34.

    Google Scholar 

  41. T. Mager andE. Wachtel,Z. Metallkde. 61 (1970) 853.

    Google Scholar 

  42. D. Shinoda, S. Asanabe andY. Sasaki,J. Phys. Soc. Jap. 19 (1964) 269.

    Google Scholar 

  43. I. A. Saltykova, Kh. Gol'dberg, F. A. Sidorenko andP. V. Gel'd,Poroshkovaya Metallurgiya 66 (1968) 73.

    Google Scholar 

  44. I. Nishida,J. Mater. Sci. 7 (1972) 1119.

    Google Scholar 

  45. E. N. Nikitin, V. I. Tarasov andV. K. Zaitsev,Fiz. Tverd. Tela 15 (1973) 1254.

    Google Scholar 

  46. L. P. Hunter,Phys. Rev. 91 (1953) 579.

    Google Scholar 

  47. G. L. Pearson andJ. Bardeen,ibid. 75 (1949) 865.

    Google Scholar 

  48. A. F. Ioffe, “Physics of Semiconductors”, translated by H. J. Goldsmid (Infosearch, London, 1960) p. 305.

    Google Scholar 

  49. J. McDaugall andE. G. Stoner,Phil. Trans. A237 (1938) 67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawasumi, I., Sakata, M., Nishida, I. et al. Crystal growth of manganese silicide, MnSi∼1.73 and semiconducting properties of Mn15Si26 . J Mater Sci 16, 355–366 (1981). https://doi.org/10.1007/BF00738624

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00738624

Keywords

Navigation