Skip to main content
Log in

Brittle fracture in a ductile material with application to hydrogen embrittlement

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A physical model of fracture in materials is developed which features a brittle crack imbedded in a plastically deformed medium. This model is presented as an alternative to fully ductile failure by hole growth, and general criteria for the two alternatives are discussed. One of these criteria for the existence of an atomically sharp crack is that the dislocation content near the crack tip be limited by the inhomogeneous character of dislocation slip in the crystal. With the dislocation distribution characteristic of Mode III fracture, we derive expressions for the fracture toughness as a function of material parameters. We have extended the theory to the case of hydrogen embrittlement in steels and compare our theoretical predictions with experimental work by others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Hahn, M. Kanninen, andA. Rosenfeld, Ann. Rev. Mater. Sci.2 (1970) 381.

    Google Scholar 

  2. B. Lawn andT. Willshire, “Fracture of Brittle Solids” (Cambridge U. Press, Cambridge, 1975).

    Google Scholar 

  3. J. Rice andR. Thomson,Phil. Mag. 29 (2974) 73.

    Google Scholar 

  4. M. Kanninen andM. Gehlen,Int. J. Fract. Mech. 7 (1971) 471.

    Google Scholar 

  5. J. D. Embury, “Strengthening by Dislocation Substructures” in “Strengthening Methods in Crystals”, edited by A. Kelly and R. Nicholson (Wiley, New York, 1971).

    Google Scholar 

  6. E. Hart, unpublished internal GE Research Report.

  7. R. Oriani andP. Josephic,Acta Met. 22 (1974) 1065.

    Google Scholar 

  8. See papers by W. Gerberich, J. Tien, and others, (Met. Soc. AIME, New York, 1976).

  9. J. Rice,J. Appl. Mech. 34 (1967) 287.

    Google Scholar 

  10. R. DeWit, “Solid State Physics”, Vol. 10, edited by F. Seitz and D. Turnbull, (Academic Press, New York, 1960) p.249.

    Google Scholar 

  11. J. Goodier, in “Fracture”, Vol. II, edited by H. Liebowitz (Academic Press, New York, 1968) p.1.

    Google Scholar 

  12. S. Burns,Acta Met. 18 (1970) 969.

    Google Scholar 

  13. N. Petch,Phil. Mag. 1 (1956) 331.

    Google Scholar 

  14. H. Adamson, “Physical Chemistry of Surfaces”, (Interscience, 1967).

  15. W. Gerberich, J. Garry, andJ. Lessar, “Effect of Hydrogen on Behavior of Materials” (Met. Soc. AIME, New York, 1976).

    Google Scholar 

  16. J. Rice, “Effect of Hydrogen on Behavior of Materials”, edited by A. Thompson and I. Bernstein, (Met. Soc. AIME, New York, 1976) p.455.

    Google Scholar 

  17. W. Gerberich andY. Chen,Met. Trans. 6A (1975) 271.

    Google Scholar 

  18. H. Johnson, “Effect of Hydrogen on Behavior of Materials” (Met. Soc. AIME, New York, 1976).

    Google Scholar 

  19. H. Heumann andPrimas,Z. fur Naturforshung 21a (1966) 260.

    Google Scholar 

  20. C. Hsieh andR. Thomson,J. Appl. Phys. 44 (1973) 2051.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomson, R. Brittle fracture in a ductile material with application to hydrogen embrittlement. J Mater Sci 13, 128–142 (1978). https://doi.org/10.1007/BF00739283

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00739283

Keywords

Navigation