Skip to main content
Log in

Time domain dielectric spectroscopy. A new effective tool for physical chemistry investigation

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The general principles of time domain dielectric spectroscopy (TDS) are summarized. The methods of data treatment and presentation, and different TDS methods which enable one to obtain the permanent spectrum of ε* (ω) in the frequency range of 105–1010 are given. The examples of TDS application for the investigation of dielectric properties in samples of different nature and structure are considered in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fellner-Feldeg H (1969) The measurements of dielectrics in time domain. J Phys Chem 73:616–623

    Google Scholar 

  2. Suggett A (1972) Time domain methods. In: Dielectric and related molecular processes, v.I. London, Burlington House, 100–120

    Google Scholar 

  3. Van Gemert MCJ (1973) High frequency time domain methods in dielectric spectroscopy. Philips Res. Reports, 28:530–572

    Google Scholar 

  4. Cole RH (1977) Time domain reflectometry. Ann Rev Phys Chem 28:283–300

    Google Scholar 

  5. Feldman YuD, Zuev YuF, Valitov VM (1979) Time domain spectroscopy of dielectrics. Russian Instrum and Exp Tech 3:611–629

    Google Scholar 

  6. Nakamura H, Husimi Y, Wada A (1981) Time domain measurement of dielectric spectra of aqueous polyelectrolyte solutions at low frequencies. J Appl Phys 52:3053–3061

    Google Scholar 

  7. Goncharov VA, OvchinnikovIV (1984) On the study of the dynamic behavior of dielectrics by thermal-noise correlation analyses. Chem Phys Lett 111:521–526

    Google Scholar 

  8. Wei YZ, Sridhar S (1989) Technique for measuring the frequency-dependent complex dielectric constants of liquids up to 20 GHz. Rev Sci Instrum 60:3042–3046

    Google Scholar 

  9. Frohlich H (1958) Theory of Dielectrics. Clarendon Press, Oxford

    Google Scholar 

  10. Bottcher CJF, Bordewijk P (1978) Theory of Electric Polarization, v. 2. Elsevier, New York

    Google Scholar 

  11. Hill, NE, Yaughan WE, Price AH, Davis M (1969) Dielectric properties and Molecular Behavior. New York, London, Van Nostrand, p 461

    Google Scholar 

  12. Feldman YuD, Levin VV (1982) Obtaining the dipole correlation function from TDS data directly in time domain. Chem Phys Lett 85:528–530

    Google Scholar 

  13. Cole RH (1984) Dielectric Polarization and Relaxation. In: NATO ASI Ser Ser CV. 135, Molecular Liquids, pp 59–100

  14. Issledovanie ob'ektov s pomoshch'ue pikosekundnih impulsov (Investigation of objects by the picosecond pulses), Ed. by Glebovich GV, Moscow, Radio and communications, 255p

  15. Time Domain Measurements in Electromagnatics, Ed. by Miller EK, NY: (1986) Van Nostrand Reinhold Co, 536p

  16. Cole RH, Winsor P, IV (1982) Fourier transform dielectric spectroscopy Fourier, Hadamard, and Hilbert transforms in Chemistry, Ed. by Marshall AG, N.Y.-L. Plenum Press, 562p

  17. Cole RH (1975) Evaluation of Dielectric Behavior by Time Domain Spectroscopy. 1. Dielectric Response by Real Time Analysis. J Phys Chem 79:1459–1469

    Google Scholar 

  18. Cole RH (1975) Evaluation of Dielectric Behavior by Time Domain Spectroscopy. 2. Complex Permittivity. J Phys Chem 79:1469–1474

    Google Scholar 

  19. Cole RH, Mashimo S, Winsor P IV (1980) Evaluation of Dielectric Behavior by Time Domain Spectroscopy. 3. Precision Difference Methods. J Phys Chem 84:786–793

    Google Scholar 

  20. Cole RH (1983) Bridge Sampling Methods for Admittance Measurements from 500 kHz to 5 GHz. IEEE Trans Instrum Meas IM-32:42–47

    Google Scholar 

  21. Feldman YuD, Goncharov VA, Zuev YuF, Valitov VM (1979) Treatment of TDS data for the lumped capacitance method; Time domain treatment. Chem Phys Lett 58:304–308

    Google Scholar 

  22. Feldman YuD, Goncharov VA, Zuev YuF, Valitov VM (1979) Treatment of TDS data for the lumped capacitance method; Frequency-domain treatment. Chem Phys Lett 65:69–70

    Google Scholar 

  23. Goncharov VA, Feldman YuD (1980) Treatment of TDS data for the lumped capacitance method. Chem Phys Lett 71:513–518

    Google Scholar 

  24. Cole RH, Berberia JG, Mashimo S, Chryssik G, Burns A, Tombari E (1989) Time domain reflection methods for dielectric measurements to 10 GHz. J Appl Phys 66:793–802. 24

    Google Scholar 

  25. Mashimo S, Umehara T, Ota T, Kuwabara S, Shinyashiki N, Yagihara S (1987) Evaluation of Complex Permittivity of Aqueous Solution by Time Domain Reflectometry. J Molec Liquids 36:135–151

    Google Scholar 

  26. Bertolini D, Cassettari M, Salvetti G, Tombari E, Veronesi S (1990) Time domain reflectometry to study the dielectric properties of liquids: Some problems and solutions. Rev Sci Instrum 61:450–456

    Google Scholar 

  27. Valitov VM, Ermolina IV, Zuev YuF, Feldman YuD (1987) Computer controlled Time domain spectrometer. Russian J Phys Chem 61:296–299

    Google Scholar 

  28. Feldman YuD, Zuev YuF, Ermolina IV, Goncharov VA (1988) Difference method of analyzing dielectric data in the time domain. Russian J Phys Chem 62:269–271

    Google Scholar 

  29. Nakamura H, Mashimo S, Wada A (1982) Precise and easy method of TDR to obtain dielectric relaxation spectra in GHz region. Japan J Appl Phys 21:1022–1024

    Google Scholar 

  30. Gestblom B, Noreland E (1984) The Single reflection Method in Dielectric Time Domain Spectroscopy. J Phys Chem 88:664–666

    Google Scholar 

  31. Bone S (1988) Time domain reflectometry: The difference method applied to conductive aqueous solutions. Biochimica et Biophysica Acta 967:401–407

    Google Scholar 

  32. Feldman YuD, Polygalov EA, Ermolina IV, Zuev YuF, Romanychev GD (to be published) The total difference method in Time Domain Dielectric Spectroscopy. Lumped capacitance approximation. J Phys Chem

  33. Eadaline DJ, Leidheser H Jr (1985) High-frequency Time Domain Dielectric Spectoscopy for Determination of Water in Polymer Coatings on Metal Substrates. Rev Sci Instrum 56:1432–1438

    Google Scholar 

  34. El Kadiri M, Parnex JP, Ledgrand C (1985) General Time Domain Analysis of TDS Data: Application to Liquid Crystals. IEEE Trans Intrum Meas IM-34:70–74

    Google Scholar 

  35. Athey TW, Stuchly MA, Stuchly SS (1982) Measurements of radio frequency permittivity of biological tissues with an open-ended coaxial line, part I-IEEE. Trans Micro Theory Tech MII-30:82–92

    Google Scholar 

  36. Shinyashiki N, Asaka N, Mashimo S, Yagihara S, Sasaki N (1990) Microwave Dielectric Study on Hydration of Mosit Collagen. Biopolymers 29:1185–1191

    Google Scholar 

  37. Jenkins S, Hodgetts TE, Clarke RN, Preece AW (1990) Dielectric measurements on reference liquids using automatic network analyzers and calculable geometries. Meas Sci Technol 691–702

  38. Ermolina IV, Polygalov EA, Romanychev GD, Zuev YuF, Feldman YuD (1991) Time domain dielectric spectroscopy with nonuniform signal discretization. Rev Sci Instrum v 62 N. 8, p. 2262–2265.

    Google Scholar 

  39. Chahine R, Bose TK (1980) Comparative studies of various methods in time domain spectroscopy. J Chem Phys 72:808–815

    Google Scholar 

  40. Boned C, Peyrelasse J (1982) Automatic measurement of complex permittivity (from 2 MHz to 8 MHz) using time domain spectroscopy. J Phys E: Sci Instum 15:534–538

    Google Scholar 

  41. Levin VV, Feldman YuD (1982) Dipole relaxation in normal aliphatic alcohols. Chem Phys Lett 87:162–164

    Google Scholar 

  42. Dutuit Y, Salefran JL, Bottreau AM (1982) Methods d'analyse complementary de spectres de relaxation dielectrique obtenus par spectroscopie temporelle; II—Etude de melanges binares propanol-decanol. Adv Molec Relax Interact Processes 23:97–112

    Google Scholar 

  43. Barker Jr RE, Chin-Ching Huang (1985) Comparative studies on dielectric properties of liquids and solids by time domain reflectometry. IEEE Trans Electric Insulation EI-20:927–930

    Google Scholar 

  44. FitzPatrick GJ, Forster EO (1985) The dielectric behavior of straight chain alcohols blends. IEEE Trans Electric Insulation EI-20:927–930

    Google Scholar 

  45. Gestblom B, Sjoblom J (1984) Dielectric relaxation study of aqueous methanol-butanol solutions. A comparison with higher homologous. Acta Chemica Scandinavica A38:575–578

    Google Scholar 

  46. Gestblom B, Sjoblom J (1984) Dielectric relaxation study of aqueous long-chain alcohol solutions. Acta Chemica Scandinavica A38:47–56

    Google Scholar 

  47. Gestblom B (1985) Dielectric relaxation study of monoalcohol solutions with 1,2-diols. J Solut Chem 14:375–392

    Google Scholar 

  48. Tombari E, Chryssikos G, Gestblom B, Cole RH (1989) Dielectric relaxation of propylene glycol-water solutions from 10 MHz to 10 GHz. J Molecular Liquids 43:53–69

    Google Scholar 

  49. Hedvig P (1984) Dielectric relaxation phenomena. Experimental aspects. IEEE Trans El Ins EI-19:371–388

    Google Scholar 

  50. Stockmayer WH (1985) Dielectric probes of polymer chain dynamics. IEEE Trans El Ins EI-20:923–925

    Google Scholar 

  51. Mashimo S, Winsor IV P, Cole RH, Matsuo K, Stockmayer WH (1983) Dielectric and NMR relaxation of poly(methyl vinyl ketone) in dilute solution. Macromolecules 16:965–967

    Google Scholar 

  52. Mashimo S, Nakamura H, Chiba A (1982) Elementary process in polymer chain motion. J Chem Phys 76:6342–6345

    Google Scholar 

  53. Yagihara S, Nozaki R, Mashimo S, Hikichi K (1984) Elementary processes in side-chain motions of poly(α-amino acids). Macromolecules 17:2700–2702

    Google Scholar 

  54. Lestrade JC, Baiali JP, Cachet H (1973) Dielectric relaxation processes in electrolyte solutions. In: Davis M (ed) Dielectric and Related Molecular Processes. The Chemical Society, London, 2:106–150

    Google Scholar 

  55. Barthel J, Buchner R, Bachhuber K, Hetzenauer H, Klebauer M, Ortaier H (1990) Molecular processes in electrolyte solutions at microwave frequencies. Pure & Appl Chem 62:2287–2296

    Google Scholar 

  56. Hall DG, Cole RH (1981) Dielectric polarization of sulfuric acid solutions. J Phys Chem 85:1065–1069

    Google Scholar 

  57. Winsor IV P, Cole RH (1982) Dielectric properties of electrolyte solutions. 1. Sodium iodide in seven solvents at various temperatures. J Phys Chem 86:2486–2490

    Google Scholar 

  58. Winsor IV P, Cole RH (1982) Dielectric properties of electrolyte solutions. 2. Alkali halides in methanol. J Phys Chem 86:2486–2490

    Google Scholar 

  59. Winsor IV P, Cole RH (1985) Dielectric behavior of aqueous NaCl solutions. J Phys Chem 89:3775–3776

    Google Scholar 

  60. Grigera JR, Ruderman G, Vericat F (1983) Iterating simulation method for the analysis of time domain dielectric data including conductivity effects. Anales Asoc Quim Argentina 71:57–67

    Google Scholar 

  61. Dorenbos P, Denharto HW (1988) A time domain reflectometry set up for measuring ionic conductivity and permittivity at high-temperatures. J Phys E 171–178

  62. Sjoblom J, Gestblom B (1987) A dielectric spectroscopic study of some ionic and nonionic microemulsions. J Coll Inter Scien 115:535–543

    Google Scholar 

  63. Bose TK, Delbos GG, Merabet M (1989) Dielectric properties of microemulsions by time domain spectroscopy. J Phys Chem 93:867–872

    Google Scholar 

  64. Gestblom B, Sjoblom J (1988) Dielectric properties of some microemulsions systems containing electrolytes. Langmuir 4:360–364

    Google Scholar 

  65. Sjoblom J, Skurtveit R, Saeten JO, Gestblom B (1991) Structural changes in the microemulsion system diodecyldimethylammonium bromide/water dodecane as investigated by means of dielectric spectroscopy. J Colloid and Interface Science 141:329–337

    Google Scholar 

  66. Henze R, Schreiber U (1985) Dielectric relaxation measurements on aerosol-OT/water/cyclohexane-solutions at low water content. Colloid & Polymer Science 263:164–172

    Google Scholar 

  67. Peyrelasse J, Boned C (1990) Conductivity, dielectric relaxation, and viscosity of ternary microemulsions: The role of the experimental path and the point of view of percolation theory. Phys Rev A 41:938–953

    Google Scholar 

  68. Feldman YuD, Fedotov VD (1987) Investigation of rotational diffusion of globular proteins by time domain spectroscopy. Russian J Phys Chem 61:1045–1051

    Google Scholar 

  69. Feldman YuD, Fedotov VV (1988) Dielectric relaxation, rotational diffusion and heat denaturation transition in aqueous solution of RNAse A. Chem Phys Lett 143:309–312

    Google Scholar 

  70. Fedotov VD, Kivaeva LS, Feldman YuD, Krushelnitsky AG, Abaturov LA, Lebedev YuO (1989) Investigation of the unfolding process in pancreatic RNAse A by time domain1HNMR and dielectric spectroscopy. In: Structure and chemistry of ribonucleases, Proceedings of the first international meeting, Moscow, 118–124

  71. Fedotov VD, Feldman YuD, Krushelnitsky AG, Stupishina EA (1989) pH-dependence investigation of bacterial RNAse dynamic structure by H-D-exchange, time domain1HNMR and dielectric spectroscopy. Structure and chemistry of ribonucleases. Proceedings of the first international meeting, Moscow, 331–338

  72. Fedetov VD, Feldman YuD, Krushelnitsky AG, Ermolina IV (1990) NMR and dielectric spectroscopy investigation of protein dynamic structure. J Molecular Structure 219:293–298

    Google Scholar 

  73. Bone S (1985) Dielectric properties of biomolecules: Some aspects of relevance to biological systems. J Bioelectricity 4:389–418

    Google Scholar 

  74. Mashimo S, Umehara T, Kuwabara S, Yagihara S (1989) Dielectric Study on dynamics and structure of water bound to DNA using a frequency range 107–1010 Hz. J Phys Chem 93:4963–4967

    Google Scholar 

  75. Kuwabara S, Umehara T, Mashimo S, Yagihara S (1988) Dynamics and structure of water bound to DNA. J Phys Chem 92:4839–4841

    Google Scholar 

  76. Umehara T, Kuwabara S, Mashimo S, Yagihara S (1990) Dielectric Study of B-, A-, and Z-DNA. Biopolymers 30:649–656

    Google Scholar 

  77. Pethig R, Kell DB (1987) The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys Med Biol 32:933–970

    Google Scholar 

  78. Dawkins AWJ, Gabriel C, Sheppard RJ, Grant EH (1981) Electrical properties of lens material at microwave frequencies. Phys Med Biol 26:1–9

    Google Scholar 

  79. Gabriel C, Grant EH, Tata R, Brown PR, Gestblom B, Noreland E (1989) Dielectric behavior of aqueous solutions of plasmid DNA at microwave frequencies. Biophys J 55:29–34

    Google Scholar 

  80. Imamatsu K, Nozaki R, Yagihara S, Mashimo S (1986) Evaluation of dielectric relaxation spectrum of phospholipids in solution by time domain reflectometry. J Chem Phys 84:6511–6517

    Google Scholar 

  81. Kwok BP, Nelson SO, Bahar E (1979) Time domain measurements for determination of dielectric properties of agricultural materials. IEEE Trans IM-28:284–289

    Google Scholar 

  82. Grant EH, Sheppard RJ, South GP (1978) Dielectric behavior of biological molecules in solutions. Clarendon Press, Oxford, p 328

    Google Scholar 

  83. Fedotov VD, Schneider H (1989) Structure and dynamics of bulk polymers by NMR methods. Springer-Verlag, 192p

  84. Feldman YuD, Valitov VM, Fedotov VD (1986) Investigation of protein hydration in aqueous solutions by dielectric spectroscopy. Studia Biophysica 111:111–114

    Google Scholar 

  85. Grigera JR, Varicat F (1979) Dielectric properties of hydrated collagen. Biopolymers 18:35–45

    Google Scholar 

  86. Zuev YF, Fedotov VD (1986) On the dielectric relaxation mechanisms of water sorbed by biopolymers. Studia Biophysica 111:165–168

    Google Scholar 

  87. Bone S (1987) Time-domain reflectometry studies of water binding and structural flexibility in chymotrypsin. Biochim Biophys Acta 916:128–134

    Google Scholar 

  88. Mashimo S, Kuwabara S, Yagihara S, Higasi K (1987) Dielectric relaxation time and structure of bound water in biological materials. J Phys Chem 91:6337–6338

    Google Scholar 

  89. Surowiec A, Stuchly SS, Swarup A (1985) Radiofrequency dielectric properties of animal tissues as a function of time following death. Phys Med Biol 30:1131–1141

    Google Scholar 

  90. Stuchly MA, Kraszewski A, Stuchly SS, Smith AM (1981) Dielectric properties of animal tissues in vivo at radio and microwave frequencies: comparison between species. Phys Med Biol 27:927–936

    Google Scholar 

  91. Thurai M, Steel MC, Sheppard RJ, Grant EH (1985) Dielectric properties of developing rabbit brain at 37°C. Bioelectromagnetics 6:235–242

    Google Scholar 

  92. Smith SR, Foster KR (1985) Dielectric properties of low-water-content tissues. Phys Med Biol 30:965–973

    Google Scholar 

  93. Armitage DW, LeVeen HH, Pethig R (1983) Radiofrequency-induced hyperthermia: computer simulation of specific absorption rate distribution using realistic anatomical models. Phys Med Biol 28:31–42

    Google Scholar 

  94. Zywietz F, Knochel R (1986) Dielectric properties of Co-γ-irradiated and microwave-heated rat tumor and skin measured in vivo between 0.2 and 2.4 GHz. Phys Med Biol 31:1021–1029

    Google Scholar 

  95. Al-Atrash AYJ (1987) Microwave hyperthermia for cancer therapy. IEE Proc A 134:493–522

    Google Scholar 

  96. Sakamoto T, Nakamura H, Uedaira H, Wada A (1989) High-frequency dielectric relaxation of water bound to hydrophilic silica gels. J Phys Chem 93:357–366

    Google Scholar 

  97. Ozeki S, Masuda Y, Sano H (1989) Nuclear magnetic resonance and dielectric relaxation studies of water adsorbed on synthetic porous alunite. J Phys Chem 93:7226–7232

    Google Scholar 

  98. Bose TK, Merabet M (1987) Dielectric relaxation study of alylcyanobiphenyl liquid crystals using time domain spectroscopy. Phys Rev A 36:5767–5773

    Google Scholar 

  99. Turcotte DE, Chryssikos GD, Perl JP, Winsor IV P, Cole RH, Risen WM (1986) Time domain dielectric measurements of conducting glasses. J Chem Phys 84:6518–6519

    Google Scholar 

  100. Akyel C, Bosisio RG, Bose TK, Merabet M (1990) A comparative study and microwave drying of milk. IEEE Trans Electr Ins 25:493–502

    Google Scholar 

  101. Proceedings of Symposium on Dielectric Phenomena in Honor of the 70th Birthday of Professor RH Cole; Discussion Session. IEEE Trans Electrical Insulation EI-20:979–988

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldman, Y.D., Zuev, Y.F., Polygalov, E.A. et al. Time domain dielectric spectroscopy. A new effective tool for physical chemistry investigation. Colloid Polym Sci 270, 768–780 (1992). https://doi.org/10.1007/BF00776148

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00776148

Key words

Navigation