Skip to main content
Log in

Characterization of tension and normally lignified wood cellulose inPopulus maximowiczii

  • Research Papers
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We have investigated unlignified tension wood and normally lignified wood celluloses inPopulus maximowiczii with particular reference to the composition of two crystalline phases Iα/Iβ (triclinic/ monoclinic). Four independent techniques, which enable us to detect the two phases, CP/MAS13C NMR, Fourier transform infrared microscopy, selected-area electron diffraction, and X-ray diffraction were applied. Because of the low crystallinity of wood celluloses, particularly in the case of celluloses in the lignified cell wall, no single method was decisive enough to be able to determine the composition of the two phases as one can with highly crystalline materials. The Iβ dominant structure (monoclinic crystal type) was, however, preferred for both tension and normal wood celluloses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi, H., Sugiyama, J., Kondo, Y. and Okano, T. (1991) The difference of cellulose crystal between softwoods and hardwoods.Sen-i Gakkaishi 47, 580–584.

    Google Scholar 

  • Atalla, R. H. and VanderHart D. L. (1984) Native cellulose. A composite of two distinct crystalline forms.Science 223, 283–285.

    Google Scholar 

  • Belton, P. S., Tanner, S. F., Cartier, N. and Chanzy, H. (1989) High-resolution solid state13C nuclear magnetic resonance spectroscopy of tunicin, an animal cellulose.Macromolecules 22, 1615–1617.

    Google Scholar 

  • Côté, W. A., Jr., and Day, A. C. (1962) The G-layer in gelatinous fibers — electron microscopic studies.For. Prod. J. 12, 333–338.

    Google Scholar 

  • Dadswell, H. E. and Wardrop, A. B. (1995) The structure and properties of tension wood.Holzforschung 9. 97–104.

    Google Scholar 

  • Furuya, N., Takahashi, S. and Miyazaki, M. (1970) The chemical compositions of gelatinous layer from the tension wood ofPopulus euro-americana.Mokuzai Gakkaishi 16, 26–30.

    Google Scholar 

  • Gardner, K. H. and Blackwell, J. (1974) The structure of native cellulose.Biopolymers 13, 1975–2001.

    Google Scholar 

  • Honjo, G. and Watanabe, M. (1958) Examination of cellulose fiber by the low-temperature specimen method of electron diffraction and electron microscopy.Nature 181, 326–328.

    Google Scholar 

  • Horii, F., Hirai, A. and Kitamaru, R. (1987a) CP/MAS13C NMR spectra of the crystalline components of native celluloses.Macromolecules 20, 2117–2120.

    Google Scholar 

  • Horii, F., Hirai, A., Kitamaru, R. and Sakurada, I. (1985) Cross polarization/magic — angle spinning13C NMR studies of cotton and cupra rayon with different water contents.Cellulose Chem. Technol. 19, 513–523.

    Google Scholar 

  • Horii, F., Yamamoto, H., Kitamaru, R., Tanahashi, M. and Higuchi T. (1987b) Transformation of native cellulose crystals induced by saturated steam at high temperaturesMacromolecules 20, 2946–2949.

    Google Scholar 

  • Horii, F., Hirai, A. and Kitamaru, R. (1987c) Cross-polarization-magic angle spinning carbon-13 NMR approach to the structural analysis of cellulose. InThe Structure of Cellulose: Characterization of the Solid States (R. H. Atalla, ed.). Washington, DC: ACS Symposium Series 340, Chapter 6, pp. 119–134.

  • Horii, F., Yamamoto, H., Hirai, A. and Kitamaru, R. (1990) InCellulose: Structural and Functional Aspects. (J. K. Kennedy, G. O. Phillips and P. A. Williams, eds.). Chichester, UK: Ellis Horwood, pp. 125–130.

    Google Scholar 

  • Marrinan, H. J. and Mann, J. (1956) Infrared spectra of the crystalline cellulose.J. Polym. Sci.21, 301–311.

    Google Scholar 

  • Mann, J. and Marrinan, H. J. (1958) Crystalline modification of cellulose. Part II. A study with plane-polarized infrared radiation.J. Polym. Sci. 32, 357–370.

    Google Scholar 

  • Meyer, K. H. and Misch, L. (1937) Position des atomes dans le nouveau modele spatial de la cellulose. Sur la constitution de la partie cristallisee de la cellulose VI.Helv. Chim. Acta.20, 232–244.

    Google Scholar 

  • Nagaoka, T. and Oyanagi, Y. (1980) Program system SALS for nonlinear least-square fitting in experimental sciences. InRecent Developments in Statistical Inference and Data Analysis (K. Matusita, ed.). North Holland Publishing Company, pp. 221–225.

  • Norberg, P. H. and Meier, H. (1966) Physical and chemical properties of the gelatinous layer in tension wood fibers of aspen (Populus tremula L.).Holzforschung 20, 174–178.

    Google Scholar 

  • Okano, T. and Koyanagi, A. (1986) Structural variation of native cellulose related to its source.Biopolymers 25, 851–861.

    Google Scholar 

  • Okano, T., Koyanagi, A., Kondo, Y. and Sarko, A. (1989) Structural variation of native cellulose related to its source. InCellulose and Wood, Chemistry and Technology (C. Schuerch, ed.). Wiley Interscience, pp. 53–65.

  • Sarko, A. and Muggli, R. (1974) Packing analysis of carbohydrates and polysaccharides. III.Valonia cellulose and cellulose II.Macromolecules 7, 486–494.

    Google Scholar 

  • Sugiyama, J., Okano, T., Yamamoto, H. and Horii, F. (1990) Transformation ofValonia cellulose crystals by an alkaline hydrothermal treatment.Macromolecules 23, 3196–3198.

    Google Scholar 

  • Sugiyama, J., Vuong, R. and Chanzy, H. (1991a) Electron diffraction study of the two crystalline phases occurring in native celluloses from an algal cell wall.Macromolecules 24, 4168–4175.

    Google Scholar 

  • Sugiyama, J., Persson, J. and Chanzy, H. (1991b) Combined infrared and electron diffraction study of the polymorphism of native celluloses.Macromolecules 24, 2461–2466.

    Google Scholar 

  • Tanahashi, M., Goto, T., Horii, F., Hirai, A. and Higuchi, T. (1989) Characterization of steam-exploded wood III. Transformation of cellulose crystals and changes of crystallinity.Mokuzai Gakkaishi 35, 654–662.

    Google Scholar 

  • Torchia, D. A. (1978) The measurement of proton-enhanced carbon-13 T1 values by a method which suppresses artifacts.J. Magn. Reson. 30, 613–616.

    Google Scholar 

  • VanderHart, D. L. and Atalla, R. H. (1984) Studies of microstructure in native celluloses using solid-state13C NMR.Macromolecules 17, 1465–1472.

    Google Scholar 

  • Wada, M., Sugiyama, J. and Okano, T. (1993) Native celluloses on the basis of two crystalline phase (Iα/Iβ) system.J. Appl. Polym. Sci. 49, 1491–1496.

    Google Scholar 

  • Wada, M., Sugiyama, J. and Okano, T. (1994) The monoclinic phase is dominant in wood cellulose.Mokuzai Gakkaishi 40, 50–56.

    Google Scholar 

  • Wellard, H. J. (1954) Variation in the lattice spacing of cellulose.J. Polym. Sci. 13, 471–476.

    Google Scholar 

  • Woodcock, C. and Sarko, A. (1980) Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal structure of native ramie cellulose.Macromolecules 13, 1183–1187.

    Google Scholar 

  • Yamamoto, H. and Horii, F. (1993) CP/MAS13C NMR analysis of the crystal transformation induced forValonia cellulose by annealing at high temperatures.Macromolecules 26, 1313–1317.

    Google Scholar 

  • Yamamoto, H. and Horii, F. (1994)In situ crystallization of bacterial cellulose I. Influence of polymeric additives, stirring and temperature on the formation celluloses Iα and Iβ as revealed by cross polarization/magic angle spinning (CP/MAS)13C NMR spectroscopy.Cellulose 1, 57–66.

    Google Scholar 

  • Yamamoto, H., Horii, F. and Odani, H. (1989) Structural changes of native cellulose crystals induced by annealing in aqueous alkaline and acidic solutions at high temperatures.Macromolecules 22, 4130–4132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wada, M., Okano, T., Sugiyama, J. et al. Characterization of tension and normally lignified wood cellulose inPopulus maximowiczii . Cellulose 2, 223–233 (1995). https://doi.org/10.1007/BF00811814

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00811814

Keywords

Navigation