Skip to main content
Log in

Lewis acidity as an explanation for oxide promotion of metals: implications of its importance and limits for catalytic reactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Sub-monolayer quantities of metal oxides are found to influence CO hydrogenation, CO2 hydrogenation, acetone hydrogenation, ethylene hydroformylation, ethylene hydrogenation, and ethane hydrogenolysis over Rh foils. The metal oxides investigated include AlOx, TiOx, VOx, FeOx, ZrOx, NbOx, TaOx, and WOx. Only those reactions involving the hydrogenation of C-O bonds are enhanced by the oxide overlayers. The coverage at which maximum rate enhancement occurs is approximately 0.5 ML for each oxide promoter. Titanium, niobium, and tantalum oxides are the most effective promoters. XPS measurements after reaction show that of the oxides studied titanium, niobium, and tantalum oxide overlayers are stable in the highest oxidation states. The trend in promotion effectiveness is attributed to the direct relationship between oxidation state and Lewis acidity. For the oxide promoters, bonding at the metal oxide/metal interface between the O-end of adsorbed CO and the Lewis acidic oxide is postulated to facilitate C-O bond dissociation and subsequent hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Tauster, Acc. Chem. Res. 20 (1987) 389.

    Google Scholar 

  2. A.T. Bell, in:Catalyst Design — Progress and Perspectives, ed. L.L. Hegedus (Wiley, New York, 1987).

    Google Scholar 

  3. R. Burch, in:Hydrogen Effects in Catalysis, eds. Z. Paal and P.G. Menon (Dekker, New York, 1988).

    Google Scholar 

  4. G.L. Haller and D.E. Resasco, Adv. Catal. 36 (1989) 173.

    Google Scholar 

  5. M.A. Vannice, Catal. Today 12 (1992) 255.

    Google Scholar 

  6. I. Mochida, I. Nonugide, H. Ishibashi and H. Fujitsu, J. Catal. 110 (1988) 159.

    Google Scholar 

  7. T. Koerts, W.J.J. Welters and R.A. van Santen, J. Catal. 134 (1992) 1.

    Google Scholar 

  8. W.M.H. Sachtler and M.J. Ichikawa, J. Phys. Chem. 90 (1986) 4752.

    Google Scholar 

  9. T. Iizuka, Y. Tanaka and K. Tanabe, J. Catal. 76 (1982) 1.

    Google Scholar 

  10. T. Iizuka, Y. Tanaka and K. Tanabe, J. Mol. Catal. 17 (1982) 381.

    Google Scholar 

  11. A. Trovarelli, C. Mustazza, G. Dolcetti, J. Kaspar and M. Graziani, Appl. Catal. 65 (1990).

  12. P. Johnston, R.W. Joyner, P.D.A. Pudney, E.S. Shapiro and B.P. Williams, Faraday Discussions Chem. Soc. 89 (1990) 91.

    Google Scholar 

  13. J.P. Hindermann, A. Kiennemann and S. Tazkritt, in:Structure and Reactivity of Surfaces, eds. C. Morterra, A. Zecchina and G. Costa (Elsevier, Amsterdam, 1989).

    Google Scholar 

  14. N.T. Pande and A.T. Bell, J. Catal. 98 (1986) 577.

    Google Scholar 

  15. R. Burch and A.R. Flambard, J. Catal. 86 (1982) 384.

    Google Scholar 

  16. W.M.H. Sachtler, D.F. Shriver, W.B. Hollenberg and A.F. Lang, J. Catal. 92 (1985) 429.

    Google Scholar 

  17. M.E. Levin, M. Salmeron, A.T. Bell and G.A. Somorjai, J. Catal. 106 (1987) 401.

    Google Scholar 

  18. M.E. Levin, M. Salmeron, A.T. Bell and G.A. Somorjai, Faraday Trans. 183 (1987) 2061.

    Google Scholar 

  19. M.E. Levin, M. Salmeron, A.T. Bell and G.A. Somorjai, Surf. Sci. 195 (1988) 429.

    Google Scholar 

  20. A.B. Boffa, A.T. Bell and G.A. Somorjai, J. Catal. 139 (1993) 602.

    Google Scholar 

  21. A.B. Boffa, A.T. Bell and G.A. Somorjai, J. Catal., in press.

  22. K.J. Williams, A.B. Boffa, M. Salmeron, A.T. Bell and G.A. Somorjai, Catal. Lett. 5 (1990) 385.

    Google Scholar 

  23. K.J. Williams, A.B. Boffa, M. Salmeron, A.T. Bell and G.A. Somorjai, Catal. Lett. 9 (1991) 41.

    Google Scholar 

  24. K.J. Williams, A.B. Boffa, M. Salmeron, A.T. Bell and G.A. Somorjai, Catal. Lett. 11 (1991) 77.

    Google Scholar 

  25. K.J. Williams, M. Salmeron, A.T. Bell and G.A. Somorjai, Catal. Lett. 1 (1988) 331.

    Google Scholar 

  26. H.C. Wang, D.F. Ogletree and M. Salmeron, J. Vac. Sci. Tech. B 9 (1992) 853.

    Google Scholar 

  27. K.J. Williams, M. Salmeron, A.T. Bell and G.A. Somorjai, Surf. Sci. 204 (1988) L745.

    Google Scholar 

  28. K.J. Williams, PhD Thesis, Department of Chemical Engineering, University of California at Berkeley, USA (1990).

    Google Scholar 

  29. A.B. Boffa, PhD Thesis, Department of Chemistry, University California at Berkeley, USA (1994).

    Google Scholar 

  30. K.I. Tanaka and A. Ozaki, J. Catal. 8 (1967) 1.

    Google Scholar 

  31. R.T. Sanderson,Chemical Periodicity (Reinhold, New York, 1960).

    Google Scholar 

  32. C.P. Horwitz and D.F. Shiver, Adv. Organomet. Chem. 23 (1984) 219.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boffa, A.B., Lin, C., Bell, A.T. et al. Lewis acidity as an explanation for oxide promotion of metals: implications of its importance and limits for catalytic reactions. Catal Lett 27, 243–249 (1994). https://doi.org/10.1007/BF00813909

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00813909

Keywords

Navigation