Skip to main content
Log in

On the relation between catalytic performance and microstructure of polycrystalline silver in the partial oxidation of methanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Electrolytic silver was investigated as partial oxidation catalyst for the conversion of methanol to formaldehyde. Using the mass spectrometric technique as on-line detector the relation between feed composition and temperature was determined allowing us to conclude that two simultaneous reaction pathways operate under steady state conditions. The microstructure was analysed by XRD and STM. A pronounced restructuring of the surface on the mesoscopic scale was detected. The atomic structure of the γ oxygen phase was determined on the (111) face of facets grown during reaction. The two reaction pathways find their counterparts in two distinctly different surface microstructures providing different geometries for the respective active sites. After prolonged time on stream the high surface mobility of the silver atoms removes all mesoscopic restructuring without changing the conversion characteristics. The observed restructuring is thus considered as a frozen large scale image of the continuously changing surface under reaction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E.L. Evans, J.M. Thomas, M. Barber and R.J.M. Griffith, Surf. Sci. 86 (1973) 245.

    Google Scholar 

  2. C. Rehren, M. Muhler, X. Bao, R. Schlögl and G. Ertl, Z. Phys. Chem. 174 (1991) 11.

    Google Scholar 

  3. X. Bao, B. Pettinger, G. Ertl and R. Schlögl, Ber. Bunsenges. Phys. Chem. 97 (1993) 322.

    Google Scholar 

  4. X. Bao, G. Lehmpfuhl, G. Weinberg, R. Schlögl and G. Ertl, J. Chem. Soc. Faraday Trans. 88 (1992) 865.

    Google Scholar 

  5. X. Bao, J.V. Barth, G. Lehmpfuhl, R. Schuster, Y. Uchida, R. Schlögl and G. Ertl, Surf. Sci. 284 (1993) 14.

    Google Scholar 

  6. H. Schubert, T. Tegtmeyer and R. Schlögl, Catal. Lett. 22 (1993) 215.

    Google Scholar 

  7. L. Lefferts, J.G. van Ommen and J.R.H. Ross, Appl. Catal. 23 (1986) 385.

    Google Scholar 

  8. L. Lefferts, J.G. van Ommen and J.R.H. Ross, J. Chem. Soc. Faraday Trans. I 84 (1988) 1491.

    Google Scholar 

  9. G. Reuss, W. Disteldorf, O. Grundler and A. Hilt,Formaldehyde, Encyclopedia of Industrial Chemistry, Vol. A11 (Verlag Chemie, Weinheim, 1988) pp. 619–651.

    Google Scholar 

  10. A.J.W. Moore, Acta Metall. 6 (1958) 293.

    Google Scholar 

  11. G.E. Rhead and H. Mykura, Acta Metall. 10 (1962) 843.

    Google Scholar 

  12. J.S. Ozcomert, W.W. Pai, N.C. Bartelt and J.E. Reutt-Robey, Phys. Rev. Lett. 72 (1994) 258.

    Google Scholar 

  13. P. Gallezot, S. Tretjak, Y. Christidis, G. Mattioda, A. Schouteeten, Y.-W. Chung and T.S. Sriram, Catal. Lett. 13 (1992) 305.

    Google Scholar 

  14. C.N.R. Rao, H.K.N. Aiyer, T. Arunarkavalli and G.U. Kulkarni, Catal. Lett. 23 (1994) 37.

    Google Scholar 

  15. M.A. Barteau and R.J. Madix, in:The Chemical Physics of Solid Surf. and Heterogeneous Catalysis, Vol. 4, eds. D.A. King and B.P. Woodruff (Eisevier, Amsterdam, 1982) pp. 95–142.

    Google Scholar 

  16. I. Otsuka and T. Iwasaki, J. Vac. Sci. Technol. A 8 (1990) 530.

    Google Scholar 

  17. L. Vazquez, A. Hernandez Creus, P. Carro, P. Ocon, P. Herrasti, C. Palacio, J.M. Vara, R.C. Salvarezza and A.J. Arvia, J. Phys. Chem. 96 (1992) 10454.

    Google Scholar 

  18. R.S. Robinson, J. Vac. Sci. Technol. A 8 (1990) 511.

    Google Scholar 

  19. T. Hashizume, M. Taniguchi, K. Motai, H. Lu, K. Tanaka and T. Sakurai, Surf. Sci. 266 (1992) 282.

    Google Scholar 

  20. W. Obertenov, M. Höpfner, W.J. Lorenz, E. Budevski, G. Staikov and H. Siegenthaler, Surf. Sci. 271 (1992) 191.

    Google Scholar 

  21. X.K. Zhao and J.H. Fendler, J. Phys. Chem. 94 (1990) 3384.

    Google Scholar 

  22. E. Grantcharova and D. Dobrev, Cryst. Res. Technol. 28 (1993) 877.

    Google Scholar 

  23. J.K. Gimzewski and A. Humbert, IBM J. Res. Develop. 30 (1986) 877.

    Google Scholar 

  24. H. van Kempen and G.F. A. van de Walle, IBM J. Res. Develop. 30 (1986) 509.

    Google Scholar 

  25. H.S. Kim, Y.C. Zheng and P.J. Bryant, J. Vac. Sci. Technol. A 8 (1990) 314.

    Google Scholar 

  26. P.K. Hansma and J. Tersoff, J. Appl. Phys. 61 (1987) R1.

    Google Scholar 

  27. X. Bao, M. Muhler, B. Pettinger, R. Schlögl and G. Ertl, Catal. Lett. 22 (1993) 215.

    Google Scholar 

  28. K. Müller, Z. Phys. 195 (1966) 105.

    Google Scholar 

  29. B. Pettinger, X. Bao, I. Wilcock, M. Muhler, R. Schlögl and G. Ertl, Angew. Chem. Int. Ed. Engl. 33 (1994) 85.

    Google Scholar 

  30. W.L. Winterbottom, J. Appl. Phys. 40 (1969) 3810.

    Google Scholar 

  31. W.L. Winterbottom, J. Appl. Phys. 40 (1969) 3803.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schubert, H., Tegtmeyer, U., Herein, D. et al. On the relation between catalytic performance and microstructure of polycrystalline silver in the partial oxidation of methanol. Catal Lett 33, 305–319 (1995). https://doi.org/10.1007/BF00814233

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00814233

Keywords

Navigation