Skip to main content
Log in

Statistics of landscapes based on free energies, replication and degradation rate constants of RNA secondary structures

Statistik von Landschaften aus freien Energien, Replikations- und Abbaugeschwindigkeitskonstanten von RNA-Sekundärstrukturen

  • Anorganische Und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Summary

RNA secondary structures are computed from primary sequences by means of a folding algorithm which uses a minimum free energy criterion. Free energies as well as replication and degradation rate constants are derived from secondary structures. These properties can be understood as highly sophisticated functions of the individual sequences whose values are mediated by the secondary structures. Such functions induce complex value landscapes on the space of sequences. The landscapes are analysed by random walk techniques, in particular autocorrelation functions and correlation lengths are computed. Free energy landscapes were found to be of AR(1) type. The rate constant landscapes, however, turned out to be more complex. In addition, gradient and adaptive walks are performed in order to get more insight into the complex structure of the landscapes.

Zusammenfassung

RNA-Sekundärstrukturen werden aus den Primärsequenzen mit Hilfe eines Computeralgorithmus berechnet, welcher einem Kriterium minimaler freier Energien folgt. Freie Energien, Replikations- oder Abbaugeschwindigkeitskonstanten werden aus den Sekundärstrukturen berechnet. Man kann daher diese Eigenschaften als komplizierte Funktionen der Sequenzen auffassen, deren Zahlenwerte durch Vermittlung der Sekundärstrukturen erhalten werden. Diese Funktionen induzieren hochkomplexe Bewertungslandschaften im Raum der Sequenzen. Die Landschaften werden mit Hilfe von Irrflugtechniken analysiert. Im einzelnen werden Autokorrelationsfunktionen und Korrelationslängen berechnet. Die freien Energie-Landschaften sind vom AR(1) Typ. Die von den Reaktionsgeschwindigkeitskonstanten abgeleiteten Landschaften stellten sich hingegen als komplexer heraus. Zusätzlich werden die Bewertungslandschaften auch noch mit Hilfe vonGradient undAdaptive Walks untersucht, um mehr Einblick in ihre komplexe Struktur zu gewinnen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horwitz M. S. Z., Dube D. K., Loeb L. A. (1989) Genome31: 112

    Google Scholar 

  2. Joyce G. F. (1989) Gene82: 83

    Google Scholar 

  3. Tuerk C., Gold L. (1990) Science249: 505

    Google Scholar 

  4. Ellington A. D., Szostak J. W. (1990) Nature346: 818

    Google Scholar 

  5. Husimi Y., Keweloh C. (1987) Rev. Sci. Instrum.58: 1109

    Google Scholar 

  6. Biebricher C. K. (1988) Cold Spring Harbor Symp. Quant. Biol.52: 299

    Google Scholar 

  7. Spiegelman S. (1971) Quart. Rev. Biophys.4: 213

    Google Scholar 

  8. Eigen M. (1986) Chemica Scripta26B: 13

    Google Scholar 

  9. Kauffman S. A. (1986) J. Theor. Biol.119: 1

    Google Scholar 

  10. Lerner R. A., Tramontano A. (1988) Sci. Am.258/3: 42

    Google Scholar 

  11. Schulz P., Lerner R. A. (in press) At the cross-roads of chemistry and immunology: Catalytic antibodies. Science

  12. Wright S. (1932) Proceedings of the Sixth International Congress on Genetics1: 356

    Google Scholar 

  13. Kauffman S. A., Levin S. (1987) J. theor. Biol.128: 11

    Google Scholar 

  14. Kauffman S. A. (1989) Adaptation on rugged fitness landscapes. In: Stein D. (ed.) Complex Systems (SFI Studies in the Science of Complexity). Addison-Wesley Longman, Redwood City, CA, pp. 527–618

    Google Scholar 

  15. Macken C. A., Perelson A. S. (1989) Proc. Natl. Acad. Sci. USA86: 6191

    Google Scholar 

  16. Fontana W., Schuster P. (1987) Biophys. Chem.26: 123

    Google Scholar 

  17. Fontana W., Schnabl W., Schuster P. (1989) Phys. Rev. A40: 3301

    Google Scholar 

  18. Schuster P. (1991) Complex optimization in an artificial RNA world. In: Farmer D., Langton C., Rasmussen S., Taylor C. (eds.) Artificial Life II (SFI Studies in the Sciences of Complexity, Vol. XII). Addison-Wesley Longman, Redwood City, CA

    Google Scholar 

  19. Eigen M., McCaskill J., Schuster P. (1988) J. Phys. Chem.92: 6881

    Google Scholar 

  20. Schuster P., Swetina J. (1988) Bull. Math. Biol.50: 635

    Google Scholar 

  21. Eigen M., McCaskill J., Schuster P. (1989) Adv. Chem. Phys.75: 149

    Google Scholar 

  22. Biebricher C. K., Eigen M., Gardiner jr., W. A. (in press) Quantitative analysis of selection and mutation in self-replicating RNA. In: Peliti L. (ed.) Biologically Inspired Physics (NATO Advanced Study Series)

  23. Jaeger J. A., Turner D. H., Zuker M. (1989) Proc. Natl. Acad. Sci. USA86: 7706

    Google Scholar 

  24. Fontana W., Konings D. A. M., Schuster P. (1991) Statistics of RNA Secondary Structures (Preprint)

  25. Sankoff D., Morin A.-M., Cedergren R. J. (1978) Can. J. Biochem.56: 440

    Google Scholar 

  26. Cech T. R. (1988) Gene73: 259

    Google Scholar 

  27. Le S.-Y., Zuker M. (1990) J. Mol. Biol.216: 729

    Google Scholar 

  28. Zuker M., Sankoff D. (1984) Bull. Math. Biol.46: 591

    Google Scholar 

  29. Zuker M. (1989) Science244: 48

    Google Scholar 

  30. Jaeger J. A., Turner D. H., Zuker M. (1990) Methods in Enzymology183: 281

    Google Scholar 

  31. McCaskill J. S. (1990) Biopolymers29: 1105

    Google Scholar 

  32. Hamming R. W. (1989) Coding and Information Theory, 2nd Ed. Prentice-Hall, Englewood Cliffs, NJ, pp. 44–47

    Google Scholar 

  33. Maynard Smith J. (1970) Nature225: 563

    Google Scholar 

  34. Shapiro B. A. (1988) CABIOS4: 387

    Google Scholar 

  35. Shapiro B. A., Zhang K. (1990) CABIOS6: 309

    Google Scholar 

  36. Sankoff D., Kruskal J. B. (1983) Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading

    Google Scholar 

  37. Tai K.-C. (1979) J. Ass. Computing Machinery26: 422

    Google Scholar 

  38. Hogeweg P., Hesper B. (1984) Nucleic Acids Research12: 67

    Google Scholar 

  39. Konings D. A. M. (1989) Pattern Analysis of RNA Secondary Structure (Proefschrift) Rijksuniversiteit te Utrecht

  40. Konings D. A. M., Hogeweg P. (1989) J. Mol. Biol.207: 597

    Google Scholar 

  41. Fontana W., Konings D. A. M., Stadler P. F., Schuster P. (1991) Quantitative comparison and Statistics of RNA Secondary Structures (Preprint)

  42. Karlin S., Taylor H. M. (1975) A First Course in Stochastic Processes, 2nd Ed. Academic Press, New York, pp. 455–461

    Google Scholar 

  43. Weinberger E. D. (1990) Biol. Cybern.63: 325

    Google Scholar 

  44. Sherrington D., Kirkpatrick S. (1975) Phys. Rev. Lettes35: 1792

    Google Scholar 

  45. Stadler P. F., Schnabl W. (1991) The Landscape of the Traveling Salesman Problem (Preprint)

  46. Freier S. M., Kierzek R., Jaeger J. A., Sugimoto N., Caruthers M. H., Neilkson T., Turner D. H. (1986) Proc. Natl. Acad. Sci. USA83: 9373

    Google Scholar 

  47. Fontana W., Stadler P. F., Griesmacher T., Weinberger E. D., Schuster P. (1991) Statistical Properties of RNA Free Energy Landscapes. A Study by Random Walk Techniques (Preprint)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Dr. h.c. mult. Viktor Gutmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontana, W., Griesmacher, T., Schnabl, W. et al. Statistics of landscapes based on free energies, replication and degradation rate constants of RNA secondary structures. Monatsh Chem 122, 795–819 (1991). https://doi.org/10.1007/BF00815919

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00815919

Keywords

Navigation