Skip to main content
Log in

Summary

  1. 1.

    The absence of reversible polymorphic transformations in the temperature region 50–1500° was established for the following oxides: Y2O3, La2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Dy2O3, Ho2O3, Er2O3, Tu2O3 and Yb2;O3, as a result of high-temperature X-ray diffraction study and thermal analysis.

  2. 2.

    The presence of irreversible transitions in the oxides Nd2O3, Sm2O3, Eu2O3, Gd2O3 and their absence at temperatures of 100–1500° for the oxides Y2O3, Dy2O3, Ho2O3, Er2O3, Tb2O3, Tu2O3 was confirmed by X-ray diffraction studies.

  3. 3.

    The impossibility of producing the low-temperature C-form of lanthanum oxide by methods of decomposition of oxygen salts and the hydroxide by heating under vacuum at pressures from 760 to 1 mm Hg was demonstrated.

  4. 4.

    The C-form of neodymium oxide was produced both by decomposition of the nitrate and by decomposition of neodymium carbonate, oxalate, and hydroxide.

  5. 5.

    The reversible transitions C → A Nd2O3 and C → B Sm2O3 are accompanied by intensive gas evolution (1.5–2% by weight).

  6. 6.

    It was hypothesized that the low-temperature forms of the oxides of neodymium, samarium, gadolinium, and europium are metastable formations, possessing thermodynamic stability within their temperature interval of existence only, as a result of extraneous ions introduced into the lattice of the oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  1. W. W. Goldschmidt, Skr. Norske Videns. Acad. Oslo, 5, 7 (1925).

    Google Scholar 

  2. W. H. Zachariasen, Z. physik. Chem.,123, 134 (1926).

    Google Scholar 

  3. J. Pauling, Z. kristallochem.,69, 415 (1928).

    Google Scholar 

  4. V. V. Serebrennikov, Chemistry of Rare-Earth Elements [in Russian], Tomsk, 1 (1959).

  5. H. Bommer, Z. anorgan und allgem. Chem.,241, 273 (1939).

    Google Scholar 

  6. G. Brauer and H. Gradinger, Z. anorgan and allgem. Chem.,276, 5–6, 209 (1954).

    Google Scholar 

  7. D. T. Cromer, J. Phys. Chem.,61, 753 (1957).

    Google Scholar 

  8. R. M. Douglass, Analyt. Chem., 28 4, 551 (1956).

    Google Scholar 

  9. O. J. Guentert and R. J. Mozzi, Acta crystallogr.,11, 746 (1958).

    Google Scholar 

  10. A. Iandelli, Gazz. chim. ital.,77, 7–8, 312 (1947).

    Google Scholar 

  11. E. Staritzky, Analyt. Chem.,28, 12, 2023 (1956).

    Google Scholar 

  12. D. H. Templeton and C. H. Dauben, J. Amer. Chem. Soc.,76, 5237 (1954).

    Google Scholar 

  13. L. Wolf and H. Bärnighausen, J. prack. Chem.,3, 4, 3–4, 228 (1956).

    Google Scholar 

  14. S. L. Blum, Amer. Ceram. Soc. Bull.,39, 6, 310 (1960).

    Google Scholar 

  15. J. C. Achard, Compt. rend.,250, 3025 (1960).

    Google Scholar 

  16. C. E. Curtis and others, J. Amer. Ceram. Soc.,40, 1, 15 (1957); 42, 3, 151 (1959).

    Google Scholar 

  17. K. Löhberg, Z. phys. Chem.B-28, 5, 402 (1935).

    Google Scholar 

  18. L. Brewer, Chem. Rews,52, 1 (1953).

    Google Scholar 

  19. M. V. Shafer and R. Roy, J. Amer. Ceram. Soc.,42, 563 (1959).

    Google Scholar 

  20. R. S. Roth and S. J. Schneider, J. Res. Nat. Bur. Standards,64, A, 309 (1960).

    Google Scholar 

  21. J. Warshaw and R. Roy, J. Phys. Chem.,65, 11, 2048 (1961).

    Google Scholar 

  22. W. W. Wendlang, Analyt. Chem. acta,15, 5, 435 (1956); Analyt. Chem.,30, 1, 58 (1958); J. Inorg. Nuckl. Chem.,12, 276 (1960).

    Google Scholar 

  23. M. N. Ambrozzhii and M. I. Nikolaevskaya, Scientific Yearbook of Saratov University for 1954 [in Russian], p. 486.

  24. P. N. Palei, I. G. Sentyurin, and I. S. Sklyarenko, Zh. analit. khimii,12, 3, 318 (1957).

    Google Scholar 

  25. Yu. S. Sklyarenko, I. S. Sklyarenko, and T. M. Chubukova, Zh. analit. khimii,16, 4, 417 (1961).

    Google Scholar 

  26. Carro, J. rech. Centre, nat. rech. Sci., 39, 107 (1957).

    Google Scholar 

  27. A. G. Boganov, High-Temperature Adiabatic Calorimeter. Instruments for Chemical, Electrical, and Physicochemical Investigations [in Russian], Izd. TsITÉI, 4 (1960).

Download references

Authors

Additional information

Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimisheskaya, No. 7, pp. 1131–1138, July, 1965

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glushkova, V.B., Boganov, A.G. Polymorphism of rare-earth sesquioxides. Russ Chem Bull 14, 1101–1107 (1965). https://doi.org/10.1007/BF00847877

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00847877

Keywords

Navigation