Skip to main content
Log in

Anaerobic treatment of sulphate-containing waste streams

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Sulphate-containing wastewaters from the paper and board industry, molasses-based fermentation industries and edible oil refineries present difficulties during anaerobic treatment, leading to problems of toxicity, reduction in methane yield, odour and corrosion. The microbiology and biochemistry of dissimilatory sulphate reduction are reviewed in order to illustrate the potential competition between sulphate reducers and other anaerobes involved in the sequential anaerobic mineralisation process. The theoretical considerations which influence the outcome of competition between sulphate reducers and fermentative, syntrophic, homoacetogenic and methanogenic bacteria are discussed. The actual outcome, under the varying influent organic composition and strength and sulfate concentrations which prevail during digestion of industrial wastewaters, may be quite different to that predicted by thermodynamic or kinetic considerations. The factors governing competitive interactions between SRB and other anaerobes involved in methanogenesis is discussed in the context of literature data on sulphate wastewater treatment and with particular reference to laboratory and full-scale digestion of citric acid production wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aeckersberg F, Bak F & Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons by a new type of sulfate-reducing bacterium. Archives of Microbiology 156: 5–14

    Google Scholar 

  • Alphenaar PA (1994) Anaerobic granular sludge: characterisation and factors affecting its functioning. Ph.D. Thesis, University of Wageningen, The Netherlands

    Google Scholar 

  • Alphenaar PA, Visser A & Lettinga G (1993) The effect of liquid upward velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high sulphate content. Bioresearch Technology 43: 249–258

    Google Scholar 

  • Anderson GK, Donnelly T & McKeown KJ (1982) Identification and control of inhibition in the anaerobic treatment of industrial wastewaters. Process Biochemistry July/August: 28–41

  • Badziong W, Ditter B & Thauer RK (1979) Acetate and carbon dioxide assimilation byDesulfovibrio vulgaris (Marburg), growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources. Archives of Microbiology 117: 209–214

    Google Scholar 

  • Banat IM & Nedwell DB (1983) Mechanisms of turnover of C2–C4 fatty acids in high sulphate and low sulphate anaerobic sediments. FEMS Microbiology Letters 17: 107–110

    Google Scholar 

  • Campbell LL & Postgate JR (1965) Classification of the sporeforming sulfate-reducing bacteria. Bacteriological Reviews 29: 359–363

    Google Scholar 

  • Carrondo MJT, Silva JMC, Figueira MII, Ganho RMB & Oliveira JFS (1983) Anaerobic filter treatment of molasses fermentation wastewater. Water Science and Technology 15: 117–126

    Google Scholar 

  • Colleran E, Finnegan S & O'Keeffe RB (1994) Anaerobic digestion of high sulphate-containing wastewater from the industrial production of citric acid. In: Proceedings of the 7th International Symposium on Anaerobic Digestion: Oral Papers (pp 160–169). RSA (Litho) Ltd., Goodwood, South Africa

    Google Scholar 

  • Cord-Ruwisch R, Steitz H-J & Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Archives of Microbiology 149: 350–357

    Google Scholar 

  • Cummings JH (1981) Short chain fatty acids in the human colon. Gut 22: 763–779

    Google Scholar 

  • Cypionka H, Widdel F & Pfennig N (1985) Survival of sulfate-reducing bacteria after oxygen stress and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiology Ecology 31: 39–45

    Google Scholar 

  • Daniels L, Belay N & Rajagopal BS (1986) Assimilatory reduction of sulfate and sulfite by methanogenic bacteria. Applied & Environmental Microbiology 51: 703–709

    Google Scholar 

  • Finnegan S (1994) Anaerobic digestion of sulphate-containing wastewater from citric acid production. Ph.D. Thesis, University College Galway, Ireland

    Google Scholar 

  • Florencio L (1994) The fate of methanol in anaerobic bioreactors. Ph.D. Thesis, University of Wageningen, The Netherlands

    Google Scholar 

  • Florencio L, Field JA & Lettinga G (1994) Importance of cobalt for individual trophic groups in an anaerobic methanol-degrading consortium. Applied & Environmental Microbiology 60: 227–234

    Google Scholar 

  • Garrels RM & Christ CL (1965) Solutions, Minerals and Equilibria. Harper & Row, New York

    Google Scholar 

  • Gibson GR (1990) Physiology and ecology of the sulphate-reducing bacteria. Journal of Applied Bacteriology 69: 769–797

    Google Scholar 

  • Hansen TA (1993) Carbon metabolism of sulfate-reducing bacteria. In: Odom JM & Rivers-Singleton JR (eds) The Sulfate-Reducing Bacteria: Contemporary Perspectives (pp 21–40). Springer-Verlag, New York

    Google Scholar 

  • Heijthuijsen JHFG & Hansen TA (1986) Interspecies hydrogen transfer in co-cultures of methanol-utilising acidogens and sulfate-reducing or methanogenic bacteria. FEMS Microbiology Letters 38: 57–64

    Google Scholar 

  • Heppner B, Zellner G & Diekmann H (1992) Start-up and operation of a propionate-degrading fluidized-bed reactor. Applied Microbiology and Biotechnology 36: 810–816

    Google Scholar 

  • Hilton BL & Oleszkiewicz JA (1988) Sulfide-induced inhibition of anaerobic digestion. Journal of Environmental Engineering 114(6): 1377–1391

    Google Scholar 

  • Hilton MG & Archer DB (1988) Anaerobic digestion of a sulfate-rich molasses wastewater: inhibition of hydrogen sulfide formation. Biotechnology Bioengineering 31: 885–888

    Google Scholar 

  • Hoeks FWJMM, Ten Hoopen, Roels JA & Kuenen JG (1984) Anaerobic treatment of acid water (methane production in a sulfate-rich environment). In: Houwink EH & Van der Meer RR (Eds) Innovations in Biotechnology (pp 113–119). Elsevier Science, Amsterdam

    Google Scholar 

  • Ingvorsen K, Zehnder AJB & Jorgensen BB (1984) Kinetics of sulfate and acetate uptake byDesulfobacter postgatei. Applied & Environmental Microbiology 47: 403–408

    Google Scholar 

  • Isa Z, Grusenmeyer S & Verstraete W (1986a) Sulfate reduction relative to methane production in high-rate anaerobic digestion: Technical Aspects. Applied and Environmental Microbiology 51(3): 572–579

    Google Scholar 

  • —— (1986b) Sulfate reduction relative to methane production in high-rate anaerobic digestion: Microbiological Aspects. Applied and Environmental Microbiology 51(3): 580–587

    Google Scholar 

  • Iza J (1991) Fluidised bed reactors for anaerobic wastewater treatment. Water Science and Technology 24: 109–132

    Google Scholar 

  • Iza J, Colleran E, Paris JM & Wu W-M (1991) International workshop on anaerobic treatment technology for municipal and industrial wastewaters: summary paper. Water Science & Technology 24: 1–16

    Google Scholar 

  • Jansen K, Thauer RK, Widdel F & Fuchs G (1984) Carbon assimilation pathways in sulfate reducing bacteria. Formate, carbon dioxide, carbon monoxide and acetate assimilation inDesulfovibrio baarsii. Archives of Microbiology 138: 257–262

    Google Scholar 

  • Khan AW & Trottier TM (1978) Effect of sulfur containing compounds on degradation of cellulose to methane by a mixed culture obtained from sewage sludge. Applied and Environmental Microbiology 35: 1027–1034

    Google Scholar 

  • King GM, Klug MJ & Lovley DR (1983) Metabolism of acetate, methanol and methylated amines in intertidal sediments of Lowes Cove, Maine. Applied & Environmental Microbiology 45: 1848–1853

    Google Scholar 

  • Kroiss H & Plahl-Wabnegg F (1983) Sulphide toxicity with anaerobic wastewater treatment. In: Van der Brink WJ (Ed) Proceedings European Symposium on Anaerobic Wastewater Treatment (AWWT) (pp 72–78). TNO Corporate Communication Dept., The Hague, The Netherlands

    Google Scholar 

  • Kühl M & Jorgenson BB (1992) Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Applied & Environmental Microbiology 58: 1164–1174

    Google Scholar 

  • Laanbroek HJ, Abee T & Voogd IL (1982) Alcohol conversions byDesulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen. Archives of Microbiology 133: 178–184

    Google Scholar 

  • Lawrence AW & McCarty PL (1965) The role of sulfide in preventing heavy metals toxicity in anaerobic treatment. Journal Water Pollution Control Federation 37: 392–409

    Google Scholar 

  • Lawrence AW, McCarty PL & Guerin FJA (1966) The effects of sulfides on anaerobic treatment. International Journal of Air & Water Pollution 10: 207–221

    Google Scholar 

  • Lovley DR & Phillips EJP (1987) Competitive mechanisms of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Applied & Environmental Microbiology 53: 2636–2641

    Google Scholar 

  • Maillacheruvu KY, Parkins GF, Peng CY, Kuo W-C, Oonge ZI & Lebduschka V (1993) Sulfide toxicity in anaerobic systems fed sulfate and various organics. Water Environment Research 65 (2): 100–109

    Google Scholar 

  • McCartney DM (1991) Effects of sulfate and sulfide on methanogenic and sulfate-reducing activity during degradation of simple organics: role of propionate and acclimation. Ph.D. Thesis, University of Manitoba, Canada

    Google Scholar 

  • McCartney DM & Oleszkiewicz JA (1993) Competition between methanogens and sulfate reducers: effect of COD:sulfate ratio and acclimation. Water Environment Research 65: 655–664

    Google Scholar 

  • McCready RGL, Gould WD & Cook FD (1983) Respiratory nitrate reduction byDesulfovibrio sp. Archives of Microbiology 135: 182–185

    Google Scholar 

  • McInerney MJ & Bryant MP (1981) Anaerobic degradation of lactate by syntrophic associations ofMethanosarcina barkeri andDesulfovibrio species and effect of H2 on acetate degradation. Applied & Environmental Microbiology 41: 346–354

    Google Scholar 

  • Mechelas BJ & Rittenberg SC (1960) Energy coupling inDesulfovibrio desulfuricans. Journal of Bacteriology 80: 501–507

    Google Scholar 

  • Middleton AG & Lawrence AW (1977) Kinetics of microbial sulfate reduction. Journal Water Pollution Control Federation 49: 1659–1670

    Google Scholar 

  • Möller D, Schauder R, Fuchs G & Thauer RK (1987) Acetate oxidation to CO2 via a citric acid cycle involving an ATP-citrate lyase: a mechanism for the synthesis of ATP via substrate level phosphorylation inDesulfobacter postgatei growing on acetate and sulfate. Archives of Microbiology 148: 202–207

    Google Scholar 

  • Möller-Zinkhan D & Thauer RK (1990) Anaerobic lactate oxidation to 3 CO2 byArchaeoglobus fulgidus via the carbon monoxide dehydrogenase pathway: demonstration of the acetyl-CoA carbon-carbon cleavage reaction in cell extracts. Archives of Microbiology 153: 215–218

    Google Scholar 

  • Mulder A (1984) The effects of high sulphate concentrations on the methane fermentation of wastewater. In: Houwink EH & Van der Meer RR (Eds) Innovations in Biotechnology (pp 133–143). Elsevier Science, Amsterdam

    Google Scholar 

  • Nanninga HJ & Gottschal JC (1986) Anaerobic purification of wastewater from a potato-starch producing factory. I. Intermediary compounds and bacterial species involved. Water Research 20: 97–103

    Google Scholar 

  • —— (1987) Properties ofDesulfovibrio carbinolicus, sp.nov., and other sulfate-reducing bacteria isolated from an anaerobic purification plant. Applied & Environmental Microbiology 53: 802–809

    Google Scholar 

  • Oremland RS & Polcin S (1982) Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Applied & Environmental Microbiology 44: 1270–1276

    Google Scholar 

  • Parkin GF, Speece RE, Yang CHJ & Kocher WM (1983) Response of methane fermentation systems to industrial toxicants. Journal of Water Pollution Control Federation 55: 44–53

    Google Scholar 

  • Parkin GF, Lynch NA, Kuo W-C, Van Keuren EL & Bhattacharya SK (1990) Interaction between sulfate reducers and methanogens fed acetate and propionate. Research Journal WPCF 62(6): 780–788

    Google Scholar 

  • Pfennig N, Widdel F & Truper HG (1981) The dissimilatory sulfate-reducing bacteria. In: Starr MP, Stolp H, Truper HG, Balows A & Schlegel HG (Eds) The Prokaryotes Vol I (pp 926–940). Springer-Verlag, Heidelberg

    Google Scholar 

  • Pipyn P & de Smedt M (1991) BIOTIM pilot and full scale anaerobic and aerobic wastewater treatment plants on effluent from the molasses based fermentation industry. In: Verachtert H & Verstraete W (Eds) Proceedings of the International Symposium of Environmental Biotechnology. Part 1 (pp 169–171). Royal Flemish Society of Engineers, Belgium

    Google Scholar 

  • Postgate JR (1984) The Sulfate-Reducing Bacteria. Cambridge University Press, Cambridge, England

    Google Scholar 

  • Puhakka JA, Salkinoja-Salonen M, Ferguson JF & Benjamin MM (1990) Carbon flow in acetotrophic enrichment cultures from pulp mill effluent treatment. Water Research 24(4): 515–519

    Google Scholar 

  • Reis MAM, Almeida JS, Lemos PC & Carrondo MJT (1992) Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnology Bioengineering 40: 593–600

    Google Scholar 

  • Rinzema A & Lettinga G (1986) Anaerobic treatment of sulfate-containing wastewater. In: Wise DL (Ed) Biotreatment Systems Vol III (pp 65–109). CRC Press, Boca Raton, USA

    Google Scholar 

  • Rinzema A (1988) Anaerobic treatment of wastewater with high concentrations of lipids or sulphate. Ph.D. Thesis, University of Wageningen, The Netherlands

    Google Scholar 

  • Rinzema A, Paardekooper A, de Vegt A & Lettinga G (1986) Anaerobic treatment of edible oil refinery wastewater in granular sludge UASB reactors. In: Anaerobic Treatment: A Grown-Up Technology (pp 205–217). Industrial Presentations (Europe) BV, Schiedam, The Netherlands

    Google Scholar 

  • Rivers-Singleton JR (1993) The sulfate-reducing bacteria: an overview. In: Odom JM & Rivers-Singleton JR (Eds) The Sulfate-Reducing Bacteria: Contemporary Perspectives (pp 1–20). Springer-Verlag, New York

    Google Scholar 

  • Schauder R, Eikmanns B, Thauer RK, Widdel F & Fuchs G (1986) Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Archives of Microbiology 145: 162–172

    Google Scholar 

  • Scherer P & Sahm H (1981) Influence of sulphur-containing compounds on the growth ofMethanosarcina barkeri in a defined medium. European Journal of Applied Microbiology & Biotechnology 12: 28–35

    Google Scholar 

  • Speece RE (1983) Anaerobic biotechnology for industrial wastewater. Environmental Science and Technology 17: 416A-427A

    Google Scholar 

  • Speece RE & Parkin GF (1983) The response of methane bacteria to toxicity. In: Proceedings of the Third International Symposium on Anaerobic Digestion (pp 23–35). Evans & Faulkner Inc. Watertown, Massachusetts

    Google Scholar 

  • Stams AJM, Kremer DR, Nicolay K, Weenk GH & Hansen TA (1984) Pathway of propionate fermentation inDesulfobulbus propionicus. Archives in Microbiology 139: 167–173

    Google Scholar 

  • Stieb M & Schink B (1989) Anaerobic degradation of isobutyrate by methanogenic enrichment cultures and by aDesulfococcus multivorans strain. Archives of Microbiology 151: 126–132

    Google Scholar 

  • Svardal K, Gotzendorfer K & Nowak O (1993) Treatment of citric acid wastewater for high quality effluent on the anaerobic-aerobic route. Water Science and Technology 28(2): 177–186

    Google Scholar 

  • Szendry LM (1983) Start-up and operation of the Bacardi Corporation anaerobic filter. In: Proceedings of the Third International Symposium on Anaerobic Digestion (pp 365–377). Evans & Faulkner Inc. Watertown, Massachusetts

    Google Scholar 

  • Szewzyk R & Pfennig N (1987) Complete oxidation of catechol by the strictly anaerobic sulfate-reducingDesulfobacterium catecholicum sp. nov. Archives of Microbiology 147: 163–168

    Google Scholar 

  • Thauer RK (1988) Citric acid cycle, 50 years on. Modifications and alternative pathway in anaerobic bacteria. European Journal of Biochemistry 176: 497–508

    Google Scholar 

  • Thauer RK, Jungermann K & Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriology Reviews 41: 100–180

    Google Scholar 

  • Traore AS, Fardeau M-L, Hatchikan EC, LeGall J & Belaich J-P (1983) Energetics of growth of a defined mixed culture ofDesulfovibrio vulgaris andMethanosarcinabarkeri: interspecies hydrogen transfer in batch continuous culture. Applied & Environmental Microbiology 46: 1152–1156

    Google Scholar 

  • Tursman JF & Cork DJ (1989) Influence of sulphate and sulfate-reducing bacteria on anaerobic digestion technology. In: Mizrahi A & Van Wezel A (Eds) Biological Waste Treatment (pp 273–281). Alan R Liss Inc., New York

    Google Scholar 

  • Visser A, Gao Y & Lettinga G (1992) Anaerobic treatment of synthetic sulfate-containing wastewater under thermophilic conditions. Water Science & Technology 25: 193–202

    Google Scholar 

  • —— (1993a) Effects of short-term temperature increases on the mesophilic anaerobic breakdown of sulfate-containing wastewater. Water Research 27: 541–550

    Google Scholar 

  • Visser A, Alphenaar PA, Gao Y, van Rossum G & Lettinga G (1993b) Granulation and immobilisation of methanogenic and sulfate-reducing bacteria in high-rate anaerobic reactors. Applied Microbiology & Biotechnology 40: 575–581

    Google Scholar 

  • Vosjan JH (1982) Respiratory electron transport system activities in marine environments. Hydrobiological Bulletin 16: 61–68

    Google Scholar 

  • Widdel F & Pfennig N (1984) Dissimilatory sulfate or sulfurreducing bacteria. In: Kreig NR & Holt JG (Eds) Bergey's Manual of Systematic Bacteriology, Vol. 1 (pp 663–679). Williams & Wilkins, Baltimore

    Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulphate-and sulphur-reducing bacteria. In: Zehnder AJB (Ed) Biology of Anaerobic Microorganisms (pp 469–586). Wiley & Sons, New York

    Google Scholar 

  • Widdel F & Hansen TA (1991) The dissimilatory sulfate- and sulfurreducing bacteria. In: Balows A, Truper HG, Dworkin M, Hardner W & Schleifer K (Eds) The Prokaryotes (pp 3352–3378). Springer-Verlag, New York

    Google Scholar 

  • Wollersheim R, Selz A, Heppner B & Diekmann H (1989) Enrichment of acetate-, propionate-, and butyrate-degrading co-cultures from the biofilm of an anaerobic fluidized bed reactor. Applied Microbiology and Biotechnology 31: 425–429

    Google Scholar 

  • Wu W-M, Hickey RF & Zeikus JG (1991) Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria. Applied and Environmental Microbiology 57(12): 3438–3449

    Google Scholar 

  • Yoda M, Kitagawa M & Miyaji Y (1987) Long term competition between sulfate-reducing and methane-producing bacteria for acetate in anaerobic biofilms. Water Research 21: 1547–1556

    Google Scholar 

  • Zehnder AJB & Stumm W (1988) Geochemistry and biogeochemistry of anaerobic habitats. In: Zehnder AJB (Ed) Biology of Anaerobic Microorganisms (pp 1–38). John Wiley & Sons, New York

    Google Scholar 

  • Zehnder AJB, Ingvorsen K & Marti T (1982) Microbiology of methane bacteria. In: Hughes DE, Stafford DA, Wheatley BI, Baader W, Lettinga G, Nyns E-J & Verstraete W (Eds) Proceedings of Second International Symposium on Anaerobic Digestion (pp 45–68). Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  • Zeikus JG, Lynd LH, Thompson TE, Krzyeki JA, Weimer PJ & Hegge PW (1980) Isolation and characterisation of a new, methylotrophic, acidogenic anaerobe, the Marburg strain. Current Microbiology 3: 381–386

    Google Scholar 

  • Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (Ed) Methanogens: Ecology, Physiology, Biochemistry and Genetics (pp 128–206). Chapman & Hall, London/New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colleran, E., Finnegan, S. & Lens, P. Anaerobic treatment of sulphate-containing waste streams. Antonie van Leeuwenhoek 67, 29–46 (1995). https://doi.org/10.1007/BF00872194

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00872194

Key words

Navigation