Skip to main content
Log in

M m: Extension to Love waves of the concept of a variable-period mantle magnitude

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

We extend to Love waves the concept of the mantle magnitudeM mintroduced recently for Rayleigh waves. Spectral amplitudesX(ω) of Love waves in the 50–300 s period range are measured on broad-band records from major events. A distance correctionC D, regionalized to reflect the influence of different tectonic paths, and a source correctionC S, compensating for the variation of excitation with period are effected; the exact geometry and depth of the event are however ignored. The resulting expression

$$M_m = \log _{10} X(\omega ) + C_D + C_S - 0.90$$

is expected to be an estimation of log10 M 0-20, whereM 0 is the seismic moment of the event. All quantities in this equation are fully justified from a theoretical standpoint.

The analysis of a dataset of more than 300 Love records shows thatM mcorrectly describes the seismic moment, with average residuals in the range of 0.1–0.2 unit of magnitude. No significant trend with either distance or period of measurement is present. In particular,M mdoes not saturate and continues to grow linearly with log10 M 0 for very large events. The combiantion of the Rayleigh and LoveM mguards in general against underestimation ofM 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boore, D. M. (1969),Effect of Higher Mode Contamination on Measured Love Wave Phase Velocities, J. Geophys. Res.74, 6612–6616.

    Google Scholar 

  • Canas, J., andMitchell, B. J. (1978),Lateral Variation of Surface-wave Anelastic Attenuation Across the Pacific, Bull. Seismol. Soc. Am.68, 1637–1650.

    Google Scholar 

  • Cara, M. (1978),Regional Variations of Higher Rayleigh-mode Phase Velocities: A Spatial Filtering Method, Geophys. J. Roy. Astr. Soc.54, 439–460.

    Google Scholar 

  • Dziewonski, A. M., andAnderson, D. L. (1981),Preliminary Reference Earth Model, Phys. Earth Planet. Inter.25, 297–356.

    Google Scholar 

  • Dziewonski, A. M., Friedman, A., Giardini, D., andWoodhouse, J. H. (1983a),Global Seismicity of 1982: Centroid Moment-tensor Solutions for 308 Earthquakes, Phys. Earth Planet. Inter.33, 76–90.

    Google Scholar 

  • Dziewonski, A. M., Friedman, A., andWoodhouse, J. H. (1983b),Centroid Moment-tensor Solutions for January–March 1983, Phys. Earth Planet. Inter.33, 71–75.

    Google Scholar 

  • Dziewonski, A. M., Franzen, J. E., andWoodhouse, J. H. (1983c),Centroid Moment-tensor Solutions for April–June 1983, Phys. Earth Planet. Inter.33, 243–249.

    Google Scholar 

  • Dziewonski, A. M., Franzen, J. E., andWoodhouse, J. H. (1984a),Centroid Moment-tensor Solutions for July–September 1983, Phys. Earth Planet. Inter.34, 1–8.

    Google Scholar 

  • Dziewonski, A. M., Franzen, J. E., andWoodhouse, J. H. (1984b),Centroid Moment-tensor Solutions for October–December 1983, Phys. Earth Planet. Inter.34, 129–136.

    Google Scholar 

  • Dziewonski, A. M., Franzen, J. E., andWoodhouse, J. H. (1984c),Centroid Moment-tensor Solutions for January–March 1984, Phys. Earth Planet. Inter.34, 209–219.

    Google Scholar 

  • Dziewonski, A. M., Franzen, J. E., andWoodhouse, J. H. (1985a),Centroid Moment-tensor Solutions for April–June 1984, Phys. Earth Planet. Inter.37, 87–96.

    Google Scholar 

  • Dziewonski, A. M., Franzen, J. E., andWoodhouse, J. H. (1985b),Centroid Moment-tensor Solutions for July–September 1984, Phys. Earth Planet. Inter.38, 203–213.

    Google Scholar 

  • Dziewonski, A. M., Franzen, J. E., andWoodhouse, J. H. (1985c),Centroid Moment-tensor Solutions for October–December 1984, Phys. Earth Planet. Inter.39, 147–156.

    Google Scholar 

  • Dziewonski, A. M., Franzen, J. E., andWoodhouse, J. H. (1985d),Centroid Moment-tensor Solutions for January–March 1985, Phys. Earth Planet. Inter.40, 249–258.

    Google Scholar 

  • Dziewonski, A. M., Franzen, J. E., andWoodhouse, J. H. (1986a),Centroid Moment-tensor Solutions for April–June 1985, Phys. Earth Planet. Inter.41, 215–224.

    Google Scholar 

  • Dziewonski, A. M., Franzen, J. E., andWoodhouse, J. H. (1986b),Centroid Moment-tensor Solutions for July–September 1985, Phys. Earth Planet. Inter.42, 205–214.

    Google Scholar 

  • Dziewonski, A. M., Franzen, J. E., andWoodhouse, J. H. (1986c),Centroid Moment-tensor Solutions for October–December 1985, Phys. Earth Planet. Inter.43, 185–195.

    Google Scholar 

  • Dziewonski, A. M., Ekström, G., Franzen, J. E., andWoodhouse, J. H. (1987a),Global Seismicity of 1979; Centroid Moment-tensor Solutions for 524 Earthquakes, Phys. Earth Planet. Inter.48, 18–46.

    Google Scholar 

  • Dziewonski, A. M., Franzen, J. E., andWoodhouse, J. H. (1987b),Centroid Moment-tensor Solutions for January–March 1986, Phys. Earth Planet. Inter.45, 1–10.

    Google Scholar 

  • Dziewonski, A. M., Ekström, G., Franzen, J. E., andWoodhouse, J. H. (1987c),Centroid Moment-tensor Solutions for April–June 1986, Phys. Earth Planet. Inter.45, 229–239.

    Google Scholar 

  • Dziewonski, A. M., Ekström, G., Franzen, J. E., andWoodhouse, J. H. (1987d),Centroid Moment-tensor Solutions for July–September 1986, Phys. Earth Planet. Inter.46, 305–315.

    Google Scholar 

  • Dziewonski, A. M., Ekström, G., Woodhouse, J. H., andZwart, G. (1987e),Centroid Momenttensor Solutions for October–December 1986, Phys. Earth Planet. Inter.48, 5–17.

    Google Scholar 

  • Dziewonski, A. M., Ekström, G., Franzen, J. E., andWoodhouse, J. H. (1988a),Global Seismicity of 1981; Centroid Moment-tensor Solutions for 542 Earthquakes, Phys. Earth Planet. Inter.50, 155–182.

    Google Scholar 

  • Dziewonski, A. M., Ekström, G., Woodhouse, J. H., andZwart, G. (1988b),Centroid Momenttensor Solutions for January–March 1987, Phys. Earth Planet. Inter.50, 116–126.

    Google Scholar 

  • Dziewonski, A. M., Ekström, G., Woodhouse, J. H., andZwart, G. (1988c),Centroid Momenttensor Solutions for April–June 1987, Phys. Earth Planet. Inter.50, 215–225.

    Google Scholar 

  • Dziewonski, A. M., Ekström, G., Woodhouse, J. H., andZwart, G. (1988d),Centroid Momenttensor Solutions for July–September 1987, Phys. Earth Planet. Inter.53, 1–11.

    Google Scholar 

  • Dziewonski, A. M., Ekström, G., Woodhouse, J. H., andZwart, G. (1989),Centroid Momenttensor Solutions for October–December 1987, Phys. Earth Planet. Inter.54, 10–21.

    Google Scholar 

  • Forsyth, D. W. (1975),A New Method for the Analysis of Multi-mode Surface-wave Dispersion; Application to Love Wave Propagation in the East Pacific, Bull. Seismol. Soc. Am.65, 323–342.

    Google Scholar 

  • Furumoto, M., andFukao, Y. (1976),Seismic Moments of Great Deep Shocks, Phys. Earth Planet. Inter.11, 352–357.

    Google Scholar 

  • Geller, R. J. (1976),Scaling Relations for Earthquake Source Parameters and Magnitudes, Bull. Seismol. Soc. Am.66, 1501–1523.

    Google Scholar 

  • Gilbert, J. F., andDziewonski, A. M. (1975),An Application of Normal Mode Theory to the Retrieval of Structural Parameters and Source Mechanism from Seismic Spectra, Phil. Trans. Roy. Soc. London278A, 187–269.

    Google Scholar 

  • Harkrider, D. G. (1964),Surface Waves in Multi-layered Media. I: Rayleigh and Love Waves from Buried Sources in a Multilayered Half-space, Bull. Seismol. Soc. Am.54, 627–679.

    Google Scholar 

  • Hwang, H.-J., andMitchell, B. J. (1987),Shear Velocities, Q β, and the Frequency Dependence of Qβ in Stable and Tectonically Active Regions from Surface Wave Observations, Geophys. J. R. Astr. Soc.90, 575–613.

    Google Scholar 

  • Kanamori, H. (1970),Velocity and Q of Mantle Waves, Phys. Earth Planet. Inter.2, 259–275.

    Google Scholar 

  • Kanamori, H., andStewart, G. S. (1976),Mode of Strain Release along the Gibbs Fracture Zone, Mid-Atlantic Ridge, Phys. Earth Planet. Inter.11, 312–332.

    Google Scholar 

  • Maupin, V.,Etude des caractéristiques des ondes de surface en milieu anisotrope; application à l'analyse d'anomalies de polarisation à la station de Port-aux-Français, Thèse, (Université Louis Pasteur, Strasbourg 1987).

    Google Scholar 

  • Mitchell, B. J., andYu, G.-K. (1980),Surface-wave Dispersion, Regionalized Velocity Models, and Anisotropy of the Pacific Crust and Upper Mantle, Geophys. J. R. Astr. Soc.63, 497–514.

    Google Scholar 

  • Nakanishi, I. (1981),Shear Velocity and Shear Attenuation Models Inverted from the World-wide and Pure-path Average Data of Mantle Rayleigh Waves(0S25 to0S80) and Fundamental Normal Modes (0S2 to0S24), Geophys. J. R. Astr. Soc.66, 83–130.

    Google Scholar 

  • Okal, E. A. (1988),Seismic Parameters Controlling Far-field Tsunami Amplitudes: A Review, Natural Hazards1, 67–96.

    Google Scholar 

  • Okal, E. A. (1989),A Theoretical Discussion of Time-domain Magnitudes: The Prague Formula for M s and the Mantle Magnitude Mm, J. Geophys. Res.94, 4194–4204.

    Google Scholar 

  • Okal, E. A. (1990),M m: A Variable-period Mantle Magnitude for Intermediate and Deep Earthquakes, Pure Appl. Geophys.134, 333–354.

    Google Scholar 

  • Okal, E. A., andGeller, R. J. (1979),On the Observability of Isotropic Seismic Sources: The July 31, 1970 Colombian Earthquake, Phys. Earth Planet. Inter.18, 176–196.

    Google Scholar 

  • Okal, E. A., andJo, B.-G. (1983),Regional Dispersion of First-order Overtone Rayleigh Waves, Geophys. J. Roy. Astr. Soc.72, 461–481.

    Google Scholar 

  • Okal, E. A., andTalandier, J. (1989),M m: A Variable Period Mantle Magnitude, J. Geophys. Res.94, 4169–4193.

    Google Scholar 

  • Paulssen, H., Levshin, A. L., Snieder, R., andLander, A. V. (1989),Anomalous Surface Wave Polarization in the Iberian Peninsula as Inferred from ILAHA Data, Proc. XXVth Gen. Assemb. Int. Assoc. Seismol. Phys. Earth's Inter., Istanbul, Aug. 21-Sept. 1, 1989, p. 526 [abstract].

  • Romanowicz, B., Cara, M., Fels, J.-F., andRouland, D. (1984),GEOSCOPE: A French Initiative in Long-period Three-component Global Seismic Networks, Eos, Trans. AGU65, 753–754.

    Google Scholar 

  • Tajima, F., andKawasaki, I. (1989),3-D Particle Motion Trajectories: Direct Observation of Love-Rayleigh Coupling, Geophys. Res. Letts.16, 1051–1054.

    Google Scholar 

  • Talandier, J., andOkal, E. A. (1989),An Algorithm for Automated Tsunami Warning in French Polynesia, Based on Mantle Magnitudes, Bull. Seismol. Soc. Am.79, 1177–1193.

    Google Scholar 

  • Thatcher, W., andBrune, J. N. (1969),Higher Mode Interference and Observed Anomalous Apparent Love Wave Phase Velocities, J. Geophys. Res.74, 6603–6611.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okal, E.A., Talandier, J. M m: Extension to Love waves of the concept of a variable-period mantle magnitude. PAGEOPH 134, 355–384 (1990). https://doi.org/10.1007/BF00878738

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00878738

Key words

Navigation