Skip to main content
Log in

Radiative processes and non-equilibrium thermodynamics

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

With the assumption of an elementary physical concept meteorologically effective radiative processes (absorption-emission, scattering) can be included consistently in nonequilibrium thermodynamics of irreversible phenomena. Analogously to the usual Gibbs relations a fundamental equation was formulated for monochromatic light rays as the nucleus of the theory.

Using the methods of classical irreversible theory, a complete entropy balance equation is derived in which the entropy variations of the mass as well as of the radiation field are explicitly represented. The resulting entropy source strength functionσ through its analytical structure reveals the dynamical character of the irreversible variation terms. Theσ-expression being positive according to the second law of thermodynamics is found to have a bilinear form as a function of the irreversible fluxes representing the entropy generating radiative processes and their conjugated thermodynamic forces. The mathematical structure and the positive sign ofσ, following the usual line of reasoning, motivate the assumption of constitutive relations for the irreversible radiative processes. These equations developed from purely thermodynamical reasoning turn out to be equivalent to the usual radiative transfer equation which is founded on a very different theoretical concept. A very fundamental relationship can be deduced in this context from the entropy production function. It provides a direct thermodynamical proof that in nonscattering media the definition of a local temperature is necessarily accompanied by the validity of the Kirchhoff law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • I. Aoki,Entropy production on the earth and other planets of the solar system. J. Phys. Soc. Jpn.52, 1075–1078 (1983).

    Google Scholar 

  • U. Callies,Entropy production by scattering of arbitrarily polarized light. In: IRS'84: Current problems in atmospheric radiation (Ed.: G. Fiocco). Deepak Publ., Hampton 1984, 438 pp.

    Google Scholar 

  • U. Callies,Anwendung der Theorie irreversibler Prozesse auf atmosphärische Strahlungsvorgänge. Ber. Inst. Meteorol. u. Geophys. Univ. Frankfurt, 61, 1985.

  • U. Callies and F. Herbert,On the treatment of radiation in the entropy budget of the earth-atmosphere system. Developments in Atmospheric Science16, 311–329 (1984).

    Google Scholar 

  • U. Callies and F. Herbert,On thermodynamic evolution criteria with radiation effects of the global climate system. To be published 1988.

  • S. Chandrasekhar,Radiative transfer. Dover Publ., New York 1960, 393 pp.

    Google Scholar 

  • S. R. De Groot,Thermodynamik irreversibler Prozesse. Bibl. Inst. Mannheim 1960, 216 pp.

  • S. R. De Groot and P. Mazur,Non-equilibrium thermodynamics. North Holland Publ., Amsterdam 1962.

    Google Scholar 

  • J. A. Dutton,The global thermodynamics of atmospheric motion. Tellus25, 89–110 (1973).

    Google Scholar 

  • C. Essex, a).Radiation and irreversible thermodynamics of climate. J. Atmos. Sci.41, 1985–1991 (1984).

    Google Scholar 

  • C. Essex, b).Radiation and the violation of bilinearity in the thermodynamics of irreversible processes. Planet. Space Sci.32, 1035–1043 (1984).

    Google Scholar 

  • C. Essex, c).Minimum entropy production in the steady state and radiative transfer. Astrophys. J.285, 279–293 (1984).

    Google Scholar 

  • H. Fortak,Entropy and climate. Developments in Atmospheric Science10, 1–14 (1979).

    Google Scholar 

  • H. Fortak,Über Grundlagen der meteorologischen Strahlungshydrodynamik. Ann. Meteorologie15, 197–198 (1980).

    Google Scholar 

  • P. Glansdorff, and I. Prigogine,Thermodynamic theory of structure, stability and fluctuations. J. Wiley & Sons, London 1971, 306 pp.

    Google Scholar 

  • H. Grassl,The climate at maximum entropy production by meridional atmospheric and oceanic heat fluxes. Quart. J. R. Met. Soc.107, 153–166 (1981).

    Google Scholar 

  • I. Gyarmati,Non-equilibrium thermodynamics. Springer, Berlin 1970, 184 pp.

    Google Scholar 

  • F. Herbert,Irreversible Prozesse der Atmosphäre. 3. Teil, Phänomenologische Theorie mikroturbulenter Systeme. Beitr. Phys. Atmosph.48, 1–29 (1975).

    Google Scholar 

  • F. Herbert,A theoretical model to describe the motion of aerosol particles due to the combined action of inertia, Brownian diffusion and phoretic and electric forces. J. Atmos. Sci.35, 1744–1750 (1978).

    Google Scholar 

  • F. Herbert,Radiative effects in the theory of irreversible processes. In: IRS'84: Current problems in atmospheric radiation (Ed.: G. Fiocco). Deepak Publ., Hampton 1984, 438 pp.

    Google Scholar 

  • G. A. Korn and T. M. Korn,Mathematical handbook for scientists and engineers, 2. edition, McGraw-Hill, New York 1968, 1130 pp.

    Google Scholar 

  • W. Kröll,Properties of the entropy production due to radiative transfer. J. Quant. Spectrosc. Radiat. Transfer7, 715–723 (1967).

    Google Scholar 

  • W. Kröll,On the evolution of a plasma interacting with radiation. J. Quant. Spectrosc. Radiat. Transfer9, 1331–1341 (1969).

    Google Scholar 

  • J. Meixner and H. G. Reik,Thermodynamik der irreversiblen Prozesse. Handbuch der Physik III/2. Springer, Berlin 1959, 413–523.

    Google Scholar 

  • F. E. Nicodemus,Radiance. Am. J. Phys.31, 368–377 (1963).

    Google Scholar 

  • G. Nicolis and C. Nicolis,On the entropy balance of the earth-atmosphere system. Quart. J. R. Met. Soc.106, 691–706 (1980).

    Google Scholar 

  • A. Noda and T. Tokioka,Climates and minimá of the entropy exchange rate. J. Meteor. Soc. Japan61, 894–907 (1983).

    Google Scholar 

  • J. Oxenius,Radiative transfer and irreversibility. J. Quant. Spectrosc. Radiat. Transfer6, 65–91 (1966).

    Google Scholar 

  • G. W. Paltridge,Global dynamics and climate — a system of minimum entropy exchange. Quart. J. R. Met. Soc.101, 475–484 (1975).

    Google Scholar 

  • G. W. Paltridge,A steady state format of global climate. Quart. J. R. Met. Soc.104, 927–946 (1978).

    Google Scholar 

  • F. Perrin,Polarization of light scattered by isotropic opalescent media. J. Chem. Phys.10, 415–427 (1942).

    Google Scholar 

  • M. Planck,Theorie der Wärmestrahlung. J. A. Barth, Leipzig 1913, 206 pp.

    Google Scholar 

  • M. Planck,The theory of heat radiation. Dover Publ., New York 1959.

    Google Scholar 

  • R. W. Pohl,Optik und Atomphysik. Springer, Berlin 1976, 321 pp.

    Google Scholar 

  • I. Prigogine,Étude thermodynamique des phénomènes irréversibles. Desoer, Paris 1947.

    Google Scholar 

  • I. Prigogine,Vom Sein zum Werden. Piper München 1980, 261 pp.

  • I. Prigogine and P. Mazur,Sur léxtension de la thermodynamique aux phénomènes irreversibles liés aux degrés de liberté internes. Physica19, 241–254 (1953).

    Google Scholar 

  • D. S. Saxon,Tensor scattering matrix for the electromagnetic field. Phys. Rev.100, 1771–1775 (1955).

    Google Scholar 

  • K. K. Sen,Effect of background continuum on entropy production in radiative transfer. J. Quant. Spectrosc. Radiat. Transfer7, 571–523 (1967).

    Google Scholar 

  • K. K. Sen,Necessary conditions for steady state in radiation: matter interaction and the role of entropy. J. Quant. Spectrosc. Radiat. Transfer12, 1487–1496 (1972).

    Google Scholar 

  • R. Wildt,Radiative transfer and thermodynamics. Astrophys. J.123, 107–116 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Callies, U., Herbert, F. Radiative processes and non-equilibrium thermodynamics. Z. angew. Math. Phys. 39, 242–266 (1988). https://doi.org/10.1007/BF00945769

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00945769

Keywords

Navigation