Skip to main content
Log in

Mutation in autocatalytic reaction networks

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A class of kinetic equations describing catalysed and template induced replication, and mutation is introduced. This ODE in its most general form is split into two vector fields, a replication and a mutation field. The mutation field is considered as a perturbation of the replicator equation. The perturbation expansion is a Taylor series in a mutation parameter λ. First, second and higher order contributions are computed by means of the conventional Rayleigh-Schrödinger approach. Qualitative shifts in the positions of rest points and limit cycles on the boundary of the physically meaningful part of concentration space are predicted from flow topologies. The results of the topological analysis are summarized in two theorems which turned out to be useful in applications: the rest point migration theorem (RPM) and the limit cycle migration theorem (LCM). Quantitative expressions for the shifts of rest points are computed directly from the perturbation expansion. The concept is applied to a collection of selected examples from biophysical chemistry and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andronov, W., Leontovich, W. E., Gordon, I., Maier, A.: Qualitative theory of second order dynamic systems. New York: Halsted Press 1973

    Google Scholar 

  2. Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences, pp. 29ff. New York: Academic Press 1979

    Google Scholar 

  3. Biebricher, C. K., Eigen, M., Gardiner, W. C., Jr.: Kinetics of RNA replication. Biochemistry22, 2544–2559 (1983)

    Google Scholar 

  4. Bomze, I. M.: Lotka-Volterra equation and replicator dynamics: a two-dimensional classification. Biol. Cybern.48, 201–211 (1983)

    Google Scholar 

  5. Cech, T.: RNA as an enzyme. Sci. Am.255(5), 76–84 (1986)

    Google Scholar 

  6. Dawkins, R.: The Selfish Gene, pp. 13–21. Oxford: Oxford University Press 1976

    Google Scholar 

  7. Demetrius, L.: Random spin models and chemical kinetics. J. Chem. Phys.87, 6939–6946 (1987)

    Google Scholar 

  8. Demetrius, L., Schuster, P., Sigmund, K.: Polynucleotide evolution and branching processes. Bull. Math. Biol.47, 239–262 (1985)

    Google Scholar 

  9. Doudna, J. A., Szostak, J. A.: RNA-catalysed synthesis of complementary-strand RNA. Nature 339, 519–522 (1989)

    Google Scholar 

  10. Eigen,M.: Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften58, 465–526 (1971)

    Google Scholar 

  11. Eigen, M., McCaskill, J., Schuster, P.: The molecular quasi-species. Adv. Chem. Phys.75, 149–263 (1989)

    Google Scholar 

  12. Eigen, M., Schuster, P.: The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften64, 541–565 (1977)

    Google Scholar 

  13. Eigen, M., Schuster, P.: The hypercycle. A principle of natural self-organization. Part B: The abstract hypercycle. Naturwissenschaften65, 7–41 (1978)

    Google Scholar 

  14. Guckenheimer, J., Holmes, P: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. (Appl. Math. Sci., vol. 42, p. 13) Berlin Heidelberg New York Tokyo: Springer 1986

    Google Scholar 

  15. Hadeler, K. P.: Stable polymorphisms in a selection model with mutation. SIAM J. Appl. Math.41, 1–7 (1981)

    Google Scholar 

  16. Hirsch, M. W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. New York: Academic Press 1974

    Google Scholar 

  17. Hofbauer, J.: On the occurrence of limit cycles in the Volterra-Lotka equation. Nonlinear Anal. Theory Methods Appl.5, 1003–1009 (1981)

    Google Scholar 

  18. Hofbaue J.: The selection mutation equation. J. Math. Biol.23, 41–53 (1985)

    Google Scholar 

  19. Hofbauer, J., Schuster, P., Sigmund, K.: Competition and cooperation in catalytic selfreplication. J. Math. Biol.11, 155–168 (1981)

    Google Scholar 

  20. Hofbauer, J., Sigmund, K.: The Theory of Evolution and Dynamical Systems. Cambridge, U.K.: Cambridge University Press 1988

    Google Scholar 

  21. Karlin, S., McGregor, J.: Application of method of small parameters to multi-niche population genetic models. Theor. Popul. Biol.3, 186–209 (1972)

    Google Scholar 

  22. Karlin, S., McGregor, J.: Polymorphisms for genetic and ecological systems with weak coupling. Theor. Popul. Biol.3, 210–238 (1972)

    Google Scholar 

  23. Kingman, J. F. C.: Mathematics of genetic diversity. (CBMS-NSF Reg. Conf. Ser. Appl. Math, vol. 34) Philadelphia, Penn: SIAM 1980

    Google Scholar 

  24. Küppers, B. O.: Towards an experimental analysis of molecular self-organization and precellular Darwinian evolution. Naturwissenschaften66, 228–243 (1979)

    Google Scholar 

  25. Leuthäusser, I.: Statistical mechanics of Eigen's evolution model. J. Stat. Phys.48, 343–360 (1987)

    Google Scholar 

  26. McCaskill, J.: A localization threshold for macromolecular quasi-species from continuously distributed replication rates. J. Chem. Phys.80, 5194–5202 (1984)

    Google Scholar 

  27. Nowak, M., Schuster, P.: Error thresholds of replication in finite populations. Mutation frequencies and the onset of Muller's ratchet. J. Theor. Biol.137, 375–395 (1989)

    Google Scholar 

  28. Peixoto, M. M.: Structural stability on two-dimensional manifolds. Topology1, 101–120 (1962)

    Google Scholar 

  29. Rumschitzky, D.: Spectral properties of Eigen evolution matrices. J. Math. Biol.24, 667–680 (1987)

    Google Scholar 

  30. Schnabl, W., Stadler, P. F., Forst, C., Schuster, P.: Full characterization of a strange attractor. Chaotic dynamics in low-dimensional replicator systems. Physica D48, 65–90 (1991)

    Google Scholar 

  31. Schuster, P.: Dynamics of molecular evolution. Physica D22D, 100–119 (1986)

    Google Scholar 

  32. Schuster, P.: Structure and dynamics of replication-mutation systems. Phys. Ser.35, 402–416 (1987)

    Google Scholar 

  33. Schuster, P., Sigmund, K.: Replicator dynamics. J. Theor. Biol.100, 533–538 (1983)

    Google Scholar 

  34. Schuster, P., Sigmund, K.: Dynamics of evolutionary optimization. Ber. Bunsenges. Phys. Chem.89, 668–682 (1985)

    Google Scholar 

  35. Schuster, P., Sigmund, K., Wolff, R.: Dynamical systems under constant organization I. Topological analysis of a family of non-linear differential equations — A model for catalytic hypercycles. Bull. Math. Biol.40, 743–769 (1978)

    Google Scholar 

  36. Schuster, P., Sigmund, K., Wolff, R.: Dynamical systems under constant organization III. Cooperative and competitive behaviour of hypercycles. J. Differ. Equations32, 357–368 (1979)

    Google Scholar 

  37. Schuster, P., Sigmund, K., Wolff, R.: Dynamical systems under constant organization II. Homogeneous growth functions of degreep = 2. SIAM J. Appl. Math.38, 282–304 (1980)

    Google Scholar 

  38. Schuster, P., Swetina, J.: Stationary mutant distributions and evolutionary optimization. Bull. Math. Biol.50, 635–660 (1988)

    Google Scholar 

  39. Stadler, P. F.: Selection, Mutation and Catalysis. Dissertation, Universität Wien 1990

  40. Stadler, P. F.: Complementary replication. Math. Biosc. (1992) (in press)

  41. Stadler, P. F., Schnabl, W., Forst, C., Schuster, P.: Dynamics of small autocatalytic reaction networks II: Replication, mutation and catalysis. (Submitted 1991)

  42. Stadler, P. F., Schuster, P.: Dynamics of small autocatalytic reaction networks I: Bifurcations, permanence and exclusion. Bull. Math. Biol.52, 485–508 (1990)

    Google Scholar 

  43. Swetina, J.: First and second moments and the mean Hamming distance in a stochastic replication-mutation model for biological macromolecules. J. Math. Biol.27, 463–483 (1989)

    Google Scholar 

  44. Swetina, J., Schuster, P.: Selfreplication with errors. A model for polynucleotide replication. Biophys. Chem.16, 329–353 (1982)

    Google Scholar 

  45. Uhlenbeck, O. C.: A small catalytic oligoribonucleotide. Nature328, 596–600 (1987)

    Google Scholar 

  46. Vrba, E. S.: Levels of selection and sorting with special reference to the species level. In: Harvey, P. H., Partridge, L. (eds.) Oxford Surveys in Evolutionary Biology, vol. 6, pp. 114–115. Oxford: Oxford University Press 1989

    Google Scholar 

  47. Zeeman, E. C.: Dynamics of the evolution of animal conflicts. J. Theor. Biol.89, 249–270 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadler, P.F., Schuster, P. Mutation in autocatalytic reaction networks. J. Math. Biol. 30, 597–631 (1992). https://doi.org/10.1007/BF00948894

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00948894

Key words

Navigation