Skip to main content
Log in

Center manifolds of infinite dimensions I: Main results and applications

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

In this paper, the first of a bipartite work, we consider an abstract, nonautonomous system of evolution equations of hyperbolic type, related to semilinear wave equations. Theorem 1 states that under certain assumptions the system admits a global center manifold, or equivalently a global decoupling function which is continuously differentiable with respect to its arguments, among which timet occurs. The difficult proof is presented in part II, i.e. the continuation of the present paper. For purposes of applications a local version of Theorem 1 is proved, i.e. the local center manifold Theorem 2. We obtain a series of applications both to abstract, nonautonomous wave equations and to concrete nonautonomous, semilinear wave equations subject to Neumann and Dirichlet boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Adams,Sobolev Spaces. Academic Press, New York 1975.

    Google Scholar 

  2. P. Bates and C. K. Jones,Invariant manifolds for semilinear partial differential equations. Dynamics Reported, Vol. 2, 1–38 (1989).

    Google Scholar 

  3. L. Bers, F. John and M. Schechter,Partial Differential Equations. John Wiley, New York 1964.

    Google Scholar 

  4. J. Carr,Applications of Center Manifold Theory. Appl. Math. Sci. 35, Springer, Berlin 1981.

    Google Scholar 

  5. W. Coppel,Dichotomies in Stability Theory. Lect. Notes in Math. 629, Springer, Berlin 1970.

    Google Scholar 

  6. W. Eleonski, N. Kulagin, N. Novozhilova and V. Silin,Asymptotic expansions and qualitative analysis affinite dimensional models in non-linear field theory. Theoreticheskaya Mathematichskaya Fiska60 No. 2, 137–157 (1984).

    Google Scholar 

  7. G. Fischer,Zentrumsmannigfaltigkeiten bei elliptischen Differentialgleichungen. Math. Nachrichten115, 703–728 (1984).

    Google Scholar 

  8. J. Hadamard,Sur l'itération et les solutions asymptotiques des equations différentielles. Bull. Soc. Math. France29, 224–228 (1901).

    Google Scholar 

  9. D. Henry,Geometrie Theory of Semilinear Parabolic Equations. Lect. Notes in Math. 840, Springer, Berlin 1981.

    Google Scholar 

  10. S. Jawad,Die klassisch reguläre Lösbarkeit des Rand-Anfangswertproblems nichtlinearer Wellengleichungen mit einer Randbedingung vom gemischten Typ. Math. Z.199, 4, 479–490 (1988).

    Google Scholar 

  11. K. Kirchgässner,Wave-solutions of reversible systems and applications. J. Diff. Eq.45, 113–127 (1982).

    Google Scholar 

  12. K. Kirchgässner and J. Scheuerle,On the bounded solutions of a semi-linear equation on a strip. J. Diff. Eq.32, 119–148 (1979).

    Google Scholar 

  13. M. Kruskal and H. Segur,Nonexistence of smallamplitude breather solutions in ϕ 4-theory. Phys. Rev. Lett.58, no. 8, 747–750 (1987).

    Google Scholar 

  14. C. A. Ladyzenskaya,The Boundary Value Problems of Mathematical Physics. Appl. Math. Sci. 49, Springer, Berlin 1985.

    Google Scholar 

  15. J. Marsden and M. Me. Cracken,The Hopf Bifurcation and its Applications. Appl. Math. Sci. 19, Springer, Berlin 1976.

    Google Scholar 

  16. A. Mielke,A reduction principle for nonautonomous systems in infinite dimensional spaces. J. Diff. Eq.65, 68–88 (1986).

    Google Scholar 

  17. A. Mielke,On nonlinear problems of mixed type, a qualitative theory using infinite dimensional center manifolds. J. Dynamics and Diff. Eq., submitted.

  18. E. Nelson,Topics in Dynamics 1, Flows. Math. Notes, Princeton University Press 1969.

  19. A. Pazy,Semigroups of linear operators and applications to partial differential equations. Appl. Math. Sci. 44, Springer, Berlin 1983.

    Google Scholar 

  20. C. Perron,Die Stabilitätsfrage bei Differentialgleichungen. Math. Z.32, 703–728 (1930).

    Google Scholar 

  21. M. Reed,Abstract non-linear wave equations. Lect. Notes in Math. 507, Springer, Berlin 1976.

    Google Scholar 

  22. B. Scarpellini,Stable manifold constructions for nonlinear wave equations. To appear in “Bayreuther Math. Schriften”, Heft 35 (1991).

  23. A. Vanderbauwhede,Center manifolds, normal forms and elementary bifurcations. Dynamics Reported, Teubner, Shuttgart/Wiley, New York2, 86–169 (1989).

    Google Scholar 

  24. P. Vuillermot,Nonexistence of spatially localized free vibrations for a class of nonlinear wave equations. Comment. Math. Helvetici64, 573–586 (1987).

    Google Scholar 

  25. A. Weinstein,Periodic nonlinear waves on a half-line. Commun. Math. Phys.99, 385–388 (1985); Erratum Ibid.107, No. 1, 177 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarpellini, B. Center manifolds of infinite dimensions I: Main results and applications. Z. angew. Math. Phys. 42, 1–32 (1991). https://doi.org/10.1007/BF00962056

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00962056

Keywords

Navigation