Skip to main content
Log in

A Phragmèn-Lindelöf principle for the thermoelastic cylinder of variable cross-section

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

We consider a non-prismatic cylinder consisting of an anisotropic, compressible, inhomogeneous thermoelastic material, subject to either null tractions or null displacements on the lateral boundary and loaded by a self-equilibrated force system at one end. We show that the mean square cross-sectional measures of the temperature and the coupled displacement—temperature either grow faster than an exponentially increasing function of axial distance or decrease faster than a decaying exponential function of axial distance. We thus establish a Phragmèn-Lindelöf principle for the thermoelastic cylinder of variable cross-section.

Sommario

Viene considerato un cilindro non-prismatico costituito da un materiale termoelastico, anisotropo, comprimibile ed omogeneo. Il cilindro é soggetto a zero trazioni o zero dislocamenti sul limite laterale ed é caricato su uno dei termini con un sistema autoequilibrilata delle forze. Mostriamo che il valore medio quadratico della temperatura e dell'accoppiata della temperatura ed il dislocamento cresce più veloce che una funzione esponenziale crescente della distanza assiale o diminuisce più veloce che una funzione esponenziale declinante della distanza assiale. Viene stabilito un principio di Phragmèn-Lindelöf per il cilindro termoelastico di sezione trasversale variabile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biollay, Y., ‘First boundary value problem in elasticity: bounds for the displacements and Saint-Venant's Principle’,ZAMP,31 (1980) 556–567.

    Google Scholar 

  2. Carlson, D. E., ‘The linear theory of elasticity’. in S. Flügge (ed.),Handbuch der Physik, Vol. VIa/2, Springer-Verlag, Berlin, 1972, pp. 297–345.

    Google Scholar 

  3. Gurtin, M. E., ‘The linear theory of elasticity’. in S. Flügge (ed.),Handbuch der Physik, Vol. VIa/2, Springer-Verlag, Berlin, 1972, pp. 1–295.

    Google Scholar 

  4. Flavin, J. N., Knops, R. J. and Payne, L. E., ‘Decay estimates for the constrained elastic cylinder of variable cross section’,Quart. Appl. Math.,47 (1989) 325–350.

    Google Scholar 

  5. Horgan, C. O., ‘Recent developments concerning Saint-Venant's Principle: an update’,Appl. Mech. Rev.,42 (1989) 295–303.

    Google Scholar 

  6. Horgan, C. O. and Knowles, J. K., ‘Recent developments concerning Saint-Venant's Principle’,Adv. Appl. Mech.,23 (1983) 179–269.

    Google Scholar 

  7. Horgan, C. O. and Payne, L. E., ‘Lower bounds for free membrane and related eigenvalues’,Schneider Memorial Volume, Rend. Mat. (7,10 (1990) 457–491.

    Google Scholar 

  8. Knops, R. J., ‘A Phragmèn-Lindelöf theorem for the free elastic cylinder’,Schneider Memorial Volume, Rend. Mat. (7,10 (1990) 601–622.

    Google Scholar 

  9. Kutler, J. R. and Sigillito, V. G., ‘Lower bounds for the Stekloff and free membrane eigenvalues’,SIAM Rev.,10 (1968) 368–370.

    Google Scholar 

  10. Toupin, R. A., ‘Saint-Venant's Principle’,Arch. Rat. Mech. Anal.,18 (1965) 83–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lupoli, C. A Phragmèn-Lindelöf principle for the thermoelastic cylinder of variable cross-section. Meccanica 28, 315–322 (1993). https://doi.org/10.1007/BF00987168

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00987168

Key words

Navigation