Skip to main content
Log in

Effects of cation disordering in a natural MgAl2O4 spinel observed by rectangular parallelepiped ultrasonic resonance and Raman measurements

  • Acoustic Studies of the Elasticity and Equation of State of Minerals
  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

At moderate temperatures, the elastic properties of natural MgAl2O4 spinel differ in several significant ways from properties of synthetic spinels. Below 1000 K, the ultrasonic resonant frequencies of an ordered natural spinel change significantly after heat treatment; at higher temperatures, both types of spinels have similar resonant responses. The temperature derivatives of the elastic constants of an ordered spinel also differ from those of disordered spinels at moderate temperatures; again, at higher temperatures, both types of spinels have similar behaviors. The Raman spectra also differ below 1000 K for ordered natural and disordered spinels and are similar at higher temperatures and after cooling to ambient temperature. We associate these changes in ultrasonic resonance and Raman spectra of spinel with cation disordering at high temperature which may be quenched by cooling. We deduce estimates of the inversion parameter from the relative intensities of the two A1g Raman modes in very good agreement with estimates made from other measurements. We find thatC 11 andC 12 decrease by 4 and 8%, respectively, with 20% inversion in spinel;C 44 is less sensitive to cation order. These results imply that previous measurements of the adiabatic elastic constants of spinels at ambient conditions have been affected by the state of cation disorder of the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, O. L., andGoto, T. (1989),Measurement of Elastic Constant of Mantle-related Minerals at Temperatures up to 1800 K, Phys. Earth Plan. Int.55, 241–253.

    Google Scholar 

  • Anderson, O. L., Isaak, D. G., andOda, H. (1992),High Temperature Elastic Constant Data on Minerals Relevant to Geophysics, Rev. Geophys.30, 57–90.

    Google Scholar 

  • Askarpour, V., Manghnani, M. H., Fassbender, S., andYoneda, A. (1991), Single-crystal Elastic Properties of Spinel MgAl2O4 up to 1273 K by Brillouin Spectroscopy (abstract), EOS Trans. AGU72, 435.

    Google Scholar 

  • Chang, Z. P., andBarsch, G. R. (1973),Pressure Dependence of Single-crystal Elastic Constants and Anharmonic Properties of Spinel, JGR78, 2418–2433.

    Google Scholar 

  • Chopelas, A., andHofmeister, A. M. (1991), Vibrational Spectroscopy of Aluminate Spinels at 1 Atm and of MgAl2O4 to over 200 kbar, Phys. Chem. Minerals18, 279–293.

    Google Scholar 

  • Cynn, H., Sharma, S., Cooney, T., andNicol, M. (1992), High-temperature Raman Investigation of Order-disorder Behavior in the MgAl2O4 Spinel, Phys. Rev. B45, 500–502.

    Google Scholar 

  • Duffy, T. S., andAnderson, D. L. (1989),Seismic Velocities in Mantle Minerals and the Mineralogy of the Upper Mantle, J. Geophys. Res.94, 1895–1912.

    Google Scholar 

  • Finger, L. W., Hazen, R., andHofmeister, A. M. (1986), High-pressure Crystal Chemistry of Spinel (MgAl2O4) and Magnetite (Fe3O4): Comparisons with Silicate Spinels, Phys. Chem. Minerals13, 215–220.

    Google Scholar 

  • Fraas, L. M., Moore, J. E., andSalzberg, J. B. (1973), Raman Characterization Studies of Synthetic and Natural MgAl2O4 Crystals, J. Chem. Phys.58, 3585.

    Google Scholar 

  • Goto, T., andAnderson, O. L. (1989),Elastic Constants of Corundum to 1825 K, J. Geophys. Res.94, 7588–7602.

    Google Scholar 

  • Gwanmesia, G. D., Rigden, S., Jackson, I., andLiebermann, R. C. (1990), Pressure Dependence of Elastic Wave Velocity for β-Mg2SiO4 and the Composition of the Earth's Mantle, Science250, 794–797.

    Google Scholar 

  • Häfner, S., andLaves, F. (1966), Ordnung/Unordnung und Ultrarotabsorption, III. Die Systeme MgAl2O4−Al2O3 und MgAl2O4−LiAl5O8, Z. Krist.115, 321–330.

    Google Scholar 

  • Hashin, Z., andShtrikman, S. (1962),A Variational Approach to the Theory of the Elastic Behavior of Polycrystals, J. Mech. Phys. Solids10, 343–352.

    Google Scholar 

  • Hilbert, E. G., andGraham, E. K. (1989), Elastic Properties of Stoichiometric MgAl2O4 Spinel (abstract), EOS Trans. AGU70, 1368.

    Google Scholar 

  • Isaak, D. G. (1992),High-temperature Elasticity of Iron-bearing Olivines, J. Geophys. Res.97, 1871–1885.

    Google Scholar 

  • Isaak, D. G., Anderson, O. L., Goto, T., andSuzuki, I. (1989a),Elasticity of Single-crystal Forsterite Measured to 1700 K, J. Geophys. Res.94, 5895–5906.

    Google Scholar 

  • Isaak, D. G., Anderson, O. L., andGoto, T. (1989b),Measured Elastic Moduli of Single-crystal MgO up to 1800 K, Phys. Chem. Minerals16, 704–713.

    Google Scholar 

  • Isaak, D. G., Anderson, O. L., andOda, H. (1992),High Temperature Thermal Expansion and Elasticity of Calcium-rich Garnets, Phys. Chem. Minerals19, 106–120.

    Google Scholar 

  • Ishii, M., Mirashi, J., andYamanaka, T. (1982),Structure and Lattice Vibrations of Mg−Al Spinel Solid Solution, Phys. Chem. Minerals8, 64–68.

    Google Scholar 

  • Lewis, M. F. (1966),Elastic Constants of Magnesium Aluminate Spinel, J. Acous. Soc. Am.40, 728–729.

    Google Scholar 

  • Liu, H. P., Schock, R. N., andAnderson, D. L. (1975), Temperature Dependence of Single-crystal Spinel (MgAl2O4) Elastic Constants from 293 to 423 K Measured by Light-sound Scattering in the Raman-Nath Region, Geophys. J. R. Astr. Soc.42, 217–250.

    Google Scholar 

  • McMillan, P. R., andHofmeister, A. M.,Infrared and Raman spectroscopy in spectroscopic methods in mineralogy and geology. InReviews in Mineralogy (ed. Hawthorne, F. C.) (Mineralogical Society of America, Washington D.C. 1988) pp. 99–159.

    Google Scholar 

  • Migliori, A., Stekel, A., Sarrao, J. L., Visscher, W. M., Bell, T., andLei, M. (1991),Techniques and processes for the measurement of the resonances of small single crystal. In Proc. 28th Annual Technical Meeting of the Society of Engineering Sciences, Nov. 6–8, 1991, Gainesville, FL.

  • Millard, R. L., Peterson, R. C., andHunter, B. K. (1990), Temperature Dependence of Cation Disorder in MgAl2O4 Spinel Using Aluminum-27 MAS NMR (abstract), EOS Trans. AGU71, 653.

    Google Scholar 

  • Millard, R. L., Peterson, R. C., andHunter, B. K. (1992), Temperature Dependence of Cation Disorder in MgAl2O4 Spinel Using27Al and17O Magic-angle Spinning NMR, Am. Min.77, 44–52.

    Google Scholar 

  • Mysen, B. O., Fingel, L. W., Virgo, D., andSeifert, F. A. (1982),Curve-fitting of Raman Spectra of Silicate Glasses, Am. Min.67, 686–695.

    Google Scholar 

  • Narasimhan, C. S., andSwamy, C. S. (1980), Studies on the Solid State Properties of the Solid Solution System MgAl2−xFexO4, Phys. Stat. Sol. (a)59, 817–826.

    Google Scholar 

  • Navrotsky, A., andKleppa, O. J. (1967),The Thermodynamics of Cation Distributions in Simple Spinels, J. Inor. Nuc. Chem.29, 2701–2714.

    Google Scholar 

  • O'Connell, R. J., andGraham, E. K. (1971),Equation of State of Stoichiometric Spinel to 10 Kbar and 800°C (abstract), EOS Trans. AGU71, 359.

    Google Scholar 

  • Ohno, I. (1990),Rectangular Parallelepiped Resonance Method for Piezoelectric Crystals and Elastic Constants of Alpha-Guartz, Phys. Chem. Minerals17, 371–378.

    Google Scholar 

  • O'Horo, M. P., Frisillo, A. L., andWhite, W. B. (1973), Lattice Vibrations of MgAl2O4 Spinel, J. Phys. Chem. Solids34, 23.

    Google Scholar 

  • O'Neill, H. St. C., andNavrotsky, A. (1983),Simple Spinels: Crystallographic Parameters, Cation Radii, Lattice Energies, and Cation Distribution, Am. Min.68, 81–194.

    Google Scholar 

  • Peterson, R. C., Lager, G. A., andHitterman, R. L. (1991), A Time-of-flight Neuron Powder Diffraction Study of MgAl2O4 at Temperatures up to 1273 K, Am. Min.76, 1455–1458.

    Google Scholar 

  • Robie, R. A., Hemingway, B. S., andFisher, J. R. (1978), Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures, Geol. Surv. Bull. 1452.

  • Schmocker, U., andWaldner, F. (1976), The Inversion Parameter with Respect to the Space Group of MgAl2O4 Spinels, J. Phys. C9, L235-L237.

    Google Scholar 

  • Slack, G. A., Ham, F. S., andChrenko, R. M. (1966), Optical Absorption of Tetrahedral Fe2+ (3d6) in Cubic ZnS, CdTe, and MgAl2O4 Phys. Rev.152, 376–402.

    Google Scholar 

  • Striefler, M. E., andBarsch, G. R., Lattice dynamics of MgAl2O4 in relation to the space group of spinel. InProc. Lattice Dynamics (ed. Balkanski, M.) (Flammarion Pub. Co. Paris 1978) pp. 75–76.

    Google Scholar 

  • Sumino, Y., Ohno, I., Goto, T., andKumazawa, M. (1976),Measurement of Elastic Constants and Internal Frictions on Single-crystal MgO by Rectangular Parallelepiped Resonance, J. Phys. Earth24, 263–273.

    Google Scholar 

  • Suzuki, I., andKumazawa, M. (1980), Anomalous Thermal Expansion in Spinel MgAl2O4, Phys. Chem. Minerals5, 279–284.

    Google Scholar 

  • Thompson, P., andGrimes, N. W. (1978),Observation of Low Energy Phonons in Spinel, Solid State Comm.25, 609–611.

    Google Scholar 

  • Touloukian, Y. S., Kirby, R. K., Taylor, R. E., andLee, T. Y. R.,Thermal Expansion, Nonmetallic Solids: Thermophysical Properties of Matter, 13 (Plenum, New York-Washington, 1977).

    Google Scholar 

  • Viñuela, J. S. D., andAreán, C. O. (1987), Distribution of Copper Ions among Octahedral and Tetrahedral Sites in CuxMg1xAl2O4 Spinels, Phys. Stat. Sol. (a)101, 57–61.

    Google Scholar 

  • White, W. B., andKeramidas, V. G. (1972),Application of Infrared and Raman Spectroscopy to the Characterization of Order-disorder in High Temperature Oxides, National Bureau of Standards Special Publication364, 113–126.

    Google Scholar 

  • Wood, D. L., Imbusch, G. F., Macfarlane, R. M., Kisliuk, P., andLarkin, D. M. (1968), Optical Spectrum of Cr3+ Ions in Spinels, J. Chem. Phys.48, 5255–5263.

    Google Scholar 

  • Wood, B. J., Kirkpatrick, Y., andMontez, B. (1986), Cation Order-disorder Phenomena in MgAl2O4, Am. Min.71, 999–1006.

    Google Scholar 

  • Yamamoto, S., andAnderson, O. L. (1987),Elasticity and Anharmonicity of Potassium Chloride at High Temperature, Phys. Chem. Minerals14, 332–340.

    Google Scholar 

  • Yamamoto, S., Ohno, I., andAnderson, O. L. (1987),High Temperature Elasticity of Sodium Chloride, J. Phys. Chem. Solids48, 143–151.

    Google Scholar 

  • Yamanaka, T., andTakeuchi, Y. (1983), Order-disorder Transition in MgAl2O4 Spinel at High Temperatures up to 1700°C, Z. Krist.165, 65–78.

    Google Scholar 

  • Yamanaka, T., andIshii, M. (1986), Raman Scattering and Lattice Vibrations of Ni2SiO4 Spinel at High Temperature, Phys. Chem. Minerals13, 156–160.

    Google Scholar 

  • Yeganeh-Haeri, A., andWeidner, D. J. (1990), Single-crystal Elastic Properties of MgAl2O4 Spinel up to 1200 K (abstract), EOS Trans. AGU71, 620.

    Google Scholar 

  • Yoneda, A. (1990), Pressure Derivatives of Elastic Constants of Single Crystal MgO and MgAl2O4, J. Phys. Earth38, 19–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cynn, H., Anderson, O.L. & Nicol, M. Effects of cation disordering in a natural MgAl2O4 spinel observed by rectangular parallelepiped ultrasonic resonance and Raman measurements. PAGEOPH 141, 415–444 (1993). https://doi.org/10.1007/BF00998338

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00998338

Key Words

Navigation