Skip to main content
Log in

Particle size and structural effects in platinum electrocatalysis

  • Reviews of Applied Electrochemistry 23
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Of the several factors which influence electrocatalytic activity, particle size and structural effects are of crucial importance, but their effects and mechanism of interaction,vis-a-vis overall performance, have been, at best, vaguely understood. The situation is further aggravated by the use of a wide range of experimental conditions resulting in non-comparable data. This paper attempts systematically to present the developments to date in the understanding of these structural interactions and to point out areas for future investigation. The entire content of this review has been examined from the context of the highly dispersed Pt electrocatalyst, primarily because it has been examined in the greatest detail. In the first two sections a general idea on the correlations between surface microstructure and geometric model is presented. Subsequently, indicators of a direct correlation between particle size and catalyst support synergism are considered. The structural and particle size effect on electrocatalysis is examined from the point of view of anodic hydrogen oxidation and cathodic oxygen reduction reactions. The hydrogen and oxygen chemisorption effects, presented with the discussion on the anodic and cathodic electrocatalytic reactions, provide important clues toward resolving some of the controversial findings, especially on the dependence of particle size on the anodic hydrogen oxidation reaction. Finally, the effect of alloy formation on the cathodic oxygen reduction reaction is discussed, providing insights into the structural aspect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. V. Hardeveld and A. V. Montfoort,Surf. Sci. 4 (1969) 396.

    Google Scholar 

  2. K. Kinoshita, ‘Modern Aspects of Electrochemistry’, vol. 14. Plenum, New York (1983).

    Google Scholar 

  3. K. Kinoshita and P. Stonehart vol. 12 (1977) p. 183.

    Google Scholar 

  4. H. Knozinger,Adv. Catal. 25 (1976) 185.

    Google Scholar 

  5. T. C. Gonzalez, K. Aska, S. Namba and J. Turkevich,J. Phys. Chem. 66 (1962) 48.

    Google Scholar 

  6. H. L. Gruber,J. Phys. Chem. 66 (1962) 48.

    Google Scholar 

  7. O. M. Poltorak and V. S. Boronin,Russ. J. Phys. Chem. (Eng. transl.)49 (1965),40 (1966) 1436.

    Google Scholar 

  8. R. Hardeveld and F. Hartog,Proc. Int. Congr. Catal.; 4th, paper no. 70 (1968).

  9. P. N. Ross Jr.,J. Electrochem. Soc. 126 (1979) 67.

    Google Scholar 

  10. V. M. Jalan and C. L. Bushnell, U.S. Patent 4,136,056 and 4,137,373 (23 Jan. 1979).

  11. V. M. Jalan, ‘Preparation of highly dispersed platinum and its stabilization by carbon’.Meeting of Electrochem. Society, Montreal, Canada (9–14 May 1982).

  12. A. Pebler,J. Electrochem Soc. 133 (1) (1986) 9.

    Google Scholar 

  13. V. M. Jalan, Microstructure of highly dispersed Pt catalyst and its interaction with carbon supports,Workshop on Oxygen Electrochemistry', Quail Hollow, Painesville, Ohio (2–4 May 1979).

  14. L. J. Hillenbrand and J. W. Lacksonen,J. Electrochem. Soc. 122 (1965) 249.

    Google Scholar 

  15. J. Escard, C. Leclerc and J. P. Contour,J. Catal. 19 (1973) 31.

    Google Scholar 

  16. V. S. Bogotski and A. M. Snudkin,Electrochemica Acta 29 (5) (1984) 757–67.

    Google Scholar 

  17. A. V. Kobelev, R. M. Kobeleva and V. F. Ukhov,Dokl. Akad. Nank. (USSR)243 (1978) 692.

    Google Scholar 

  18. M. W. Brieter, “Electrochemical Processes in Fuel Cells. Springer-Verlag, Berlin and New York (1969).

    Google Scholar 

  19. R. Woods Jr.,Electroanal. Chem. 49 (1974) 217.

    Google Scholar 

  20. P. N. Ross Jr. in “Electrocatalysis of Fuel Cell Reactions”, Brookhaven Natl. Lab. Upton, New York (1978) p. 169.

    Google Scholar 

  21. M. Bold and M. Brieter,J. Electrochem. 64 (1970) 897.

    Google Scholar 

  22. L. Vertzh, I. A. Mosevich and I. Tverdovsky,Dokl. Akad. Nank. (SSSR)140 (1961) 149.

    Google Scholar 

  23. P. N. Ross Jr.,Electroanal. Chem. 76 (1977) 139.

    Google Scholar 

  24. F. G. Will,J. Electrochem. Soc. 112 (1965) 451.

    Google Scholar 

  25. G. C. Bond,Catalysis by Metals, Academic Press, New York (1962) pp. 162–170.

    Google Scholar 

  26. K. Kinoshita, J. Lundquist and P. Stonehart,J. Catal. 31 (1973) 325.

    Google Scholar 

  27. K. Kinoshita and P. Stonehart,Electrochem Acta 23 (1978) 45.

    Google Scholar 

  28. H. Angerstein-Kozlowska, W. B. A. Sharp and B. E. Conway, inProceedings of the Symposium on electrocatalysis (edited by M. W. Brieter), Electrochemical Society, Princeton, New Jersey (1974) p. 94.

    Google Scholar 

  29. A. Damjanovic, A. Day and J. O'M. Bokris,J. Electrochem. Soc. 113 (1966) 739.

    Google Scholar 

  30. W. E. O'Grady, M. Y. C. Woo, P. L. Haggans and E. Yeager, inProceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage (edited by J. D. E. McIntyre, S. Srinivasan and F. G. Will), Electrochemical Society, Princeton, New Jersey (1977) p. 172.

    Google Scholar 

  31. E. Yeager, W. E. O'Grady, M. Y. C. Woo and P. Haggans,J. Electrochem. Soc. 125 (1978) 348.

    Google Scholar 

  32. A. T. Hubbard, R. M. Ishikawa and J. Kate-Karu,J. Electroanal. Chem. 86 (1978) 271.

    Google Scholar 

  33. D. Shopov, A. Andreev and D. Petkov,J. Catal. 1 (1969) 123.

    Google Scholar 

  34. P. Stonehart and P. N. RossCatal. Rev. Sci. Eng. 12 (1975) 1.

    Google Scholar 

  35. W. Vogel, J. Lundquist, P. N. Ross and P. Stonehart,Electrochim Acta 20 (1975) 79–93.

    Google Scholar 

  36. P. N. Ross and P. Stonehart,J. Res. Inst. Catal. (Hokkaido)22 (1974) 22.

    Google Scholar 

  37. N. A. Urrison, G. V. Shtienburg and V. S. Bogotski,Electrokhimiya 11 (1975) 1298.

    Google Scholar 

  38. M. A. Barett and R. Parson,J. Electroanal. Chem. 42 (1975) App. 1.

    Google Scholar 

  39. B. E. Conway and S. Grottesfield,J. Chem. Soc. Faraday Trans. 1.69 (1973) 1090.

    Google Scholar 

  40. H. Angerstein-Kozlowska, B. E. Conway and W. B. A. Sharp,J. Electroanal. Chem. 43 (1973) 9.

    Google Scholar 

  41. B. V. Tilac, B. E. Conway and H. Angerstein-Kozlowska,J. Electroanal. Chem. 48 (1973) 1.

    Google Scholar 

  42. D. A. J. Rand and R. Woods,J. Electroanal. Chem. 31 (1971) 29.

    Google Scholar 

  43. R. Parsons and W. H. M. Visscher,J. Electroanal. Chem. 36 (1972) 329.

    Google Scholar 

  44. K. J. Vetter and J. W. Schultze,J. Electroanal. Chem. 34 (1971) 131, 141.

    Google Scholar 

  45. T. Biegler and R. Woods,J. Electroanal. Chem. 20 (1969) 73.

    Google Scholar 

  46. K. S. Kim, N. Wingorad and R. E. David,J. Am. Chem. Soc. 93 (1971) 6296.

    Google Scholar 

  47. K. S. Kim, A. F. Gossman and N. Wingorad,Anal. Chem. 46 (1974) 197.

    Google Scholar 

  48. A. K. N. Reddy, M. A. Genshaw and J. O'M. Bokris,J. Chem. Phys. 48 (1968) 671.

    Google Scholar 

  49. S. Gillman,Electrochim Acta 9 (1964) 1025.

    Google Scholar 

  50. R. Ducros and R. P. Merrill,Surf. Sci. 50 (1976) 227.

    Google Scholar 

  51. P. Le'gar'e, G. Maire, B. Carriere and J. P. Deville,Surf. Sci. 68 (1977) 348.

    Google Scholar 

  52. A. Damjanovic and V. Brusic,Electrochim Acta 11 (1967) 615.

    Google Scholar 

  53. A. J. Appleby,J. Electrochem. Soc. 117 (1970) 328.

    Google Scholar 

  54. A. Damjanovic, M. A. Genshaw and J. O'M. Bokris,J. Electrochem. Soc. 114 (1967) 466, 1107.

    Google Scholar 

  55. P. N. Ross Jr.,J. Electrochem. Soc. 126 (1979) 78.

    Google Scholar 

  56. A. J. Appleby and B. S. Baker,J. Electrochem. Soc. 125 (1978) 404.

    Google Scholar 

  57. H. Zeliger,J. Electrochem. Soc 114 (1967) 144.

    Google Scholar 

  58. J. Bett, J. Lundquist, E. Washington and P. Stonechart, Electrochim Acta.18 (1973) 343.

    Google Scholar 

  59. H. R. Kunz and G. A. Gruver,J. Electrochem. Soc 112 (1975) 1279.

    Google Scholar 

  60. W. M. Vogel and J. M. Baris,Electrochem Acta 22 (1977) 1259.

    Google Scholar 

  61. K. F. Blurton, P. Greenburg, G. H. Oswin and D. R. Rutt,J. Electrochem. Soc. 119 (1972) 559.

    Google Scholar 

  62. L. J. Bregoli,Electrochim. Acta 23 (1978) 489.

    Google Scholar 

  63. M. Peuckert, T. Yoneda, R. A. Dalla Betta and M. Boudart,J. Electrochem. Soc. 113 (5) (1986) 944–947.

    Google Scholar 

  64. P. N. Ross, Electric Power Research InstituteEPRI-EM 1553; EPRI, Palo Alto, CA. (1980).

    Google Scholar 

  65. V. M. Jalan and D. A. Landsman, U.S. Patent 4,186,110 (29 Jan. 1980); V. M. Jalan, D. A. Landsman and J. M. Lee, U.S. Patent 4,192, 907 (11 March 1980); V. M. Jalan, U.S. Patent 4,202,934 (13 May 1980).

  66. D. A. Landsman and F. J. Luczak, U.S. Patent 4,136,944 (23 Feb. 1982) and 4,373,014 (18 Feb. 1983).

  67. V. M.Jalan and E. J. Taylor,J. Electrochem. Soc. 130 (1983) 2299.

    Google Scholar 

  68. V. M. Jalan and E. J. Taylor,Proceedings of the Symposium on the Chemistry and Physics of Electrocatalysis, vol. 84 (12). The Electrochemical Society, (1984) pp. 547–57.

  69. A. J. Appleby,Cat. Rev. 4 (2) (1970) 221.

    Google Scholar 

  70. J. T. Glass, G. L. Cahen and G. E. Stoner,J. Electrochem. Soc. 134 (1987) 58–65.

    Google Scholar 

  71. L. Pauling,Nature 203 (1964) 182.

    Google Scholar 

  72. J. P. Hoare, in ‘Advances in Electrochemistry and Electro-Chemical Engineering’ vol. 6. (edited by P. Delahay) Interscience, New York (1967) p. 201.

    Google Scholar 

  73. E. Yeager, D. Scherson and B. Simic-Glavasky, in ‘The Chemistry and Physics of Electrocatalysis’, (edited by J. D. E. McIntyre, M. J. Weaver and E. B. Yeager), The Electrochemical Society Softbound Proceedings Series, Pennington, N.J. (1984) p. 247.

  74. E. Yeager, in “Electrode Materials and Processes for Energy Conversion and Storage” (edited by J. D. E. McIntyre, S. Srinvasan and F. G. Will), The Electro-Chemical Society Softbound Proceedings Series, Princeton N.J. (1977) p. 149.

  75. J. L. Gland, B. A. Sertin and G. B. Fisher,Surf. Sci. 95 (1980) 587.

    Google Scholar 

  76. J. Giner, J. Parry, L. Sweette and R. Catabriga, prepared for the National Aeronautics and Space Administration, Contract No. NASW-1233 (June 1968).

  77. P. N. Ross and A. J. Appleby,Personal Communication (1984).

  78. M. T. Paffett, J. G. Beery and G. Shimshon,J. Electrochem. Soc. 135 (6) (June 1988) 1431.

    Google Scholar 

  79. K. A. Daube, S. Paffett, S. Gottesfield and C. T. Compbell,J. Vac. Sci. Technol. a, 4 (1986) 1617.

    Google Scholar 

  80. M. T. Paffett, K. A. Daube, S. Gottesfeld and C. T. Compbell,J. Electroanal. Chem. Interfacial Electrochem. 220 (1987) 269.

    Google Scholar 

  81. S. Gottesfeld, M. T. Paffett and A. J. Reodondo,Electroanal. Chem. Interfacial Electrochem 43 (1988) 9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukerjee, S. Particle size and structural effects in platinum electrocatalysis. J Appl Electrochem 20, 537–548 (1990). https://doi.org/10.1007/BF01008861

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01008861

Keywords

Navigation