Skip to main content
Log in

Local and global behavior near homoclinic orbits

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the local behavior of systems near homoclinic orbits to stationary points of saddle-focus type. We explicitly describe how a periodic orbit approaches homoclinicity and, with the help of numerical examples, discuss how these results relate to global patterns of bifurcations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Sil'nikov, A Case of the Existence of a Denumerable Set of Periodic Motions,Sov. Math. Dokl. 6:163–166 (1965).

    Google Scholar 

  2. L. P. Sil'nikov, A Contribution to the Problem of the Structure of an Extended Neighborhood of a Rough Equilibrium State of Saddle-Focus Type,Math. USSR Sbornik 10:91–102 (1970).

    Google Scholar 

  3. A. Arneodo, P. Coullet, E. Speigel, and C. Tresser, Asymptotic Chaos, Preprint, Universite de Nice (1982).

  4. J. Guckenheimer, Multiple Bifurcation Problems of Codimension Two, Preprint, U.C. Santa Cruz (1980).

  5. J. Guckenheimer, On a Co-Dimension Two Bifurcation, inDynamical Systems and Turbulence: Warwick 1980, D. Rand and L.-S. Young, eds., Lecture Notes in Mathematics No. 898 (Springer-Verlag, Berlin, 1981).

    Google Scholar 

  6. P. Gaspard, Memoire de License, Universite de Bruxelles (1982).

  7. A. Arneodo, P. Coullet, and C. Tresser, Possible New Strange Attractors with Spiral Structure,Commun. Math. Phys. 79:573–579 (1981).

    Google Scholar 

  8. G. R. Belitskii, Equivalence and Normal Forms of Germs of Smooth Mappings,Russ. Math. Surv. 33:107–177 (1978).

    Google Scholar 

  9. C. Tresser, thesis, Universite de Nice (1981).

  10. H. W. Broer and G. Vegter, Subordinate Sil'nikov Bifurcations near Some Singularities of Vector Fields Having Low Codimension, Preprint ZW-8208, Rijksuniversitat, Groningen (1982).

  11. J. A. Yorke and K. T. Alligood, Cascades of Period-Doubling Bifurcations: A Prerequisite for Horseshoes, Preprint, University of Maryland (1982).

  12. P. Gaspard, Generation of a Countable Set of Homoclinic Flows Through Bifurcation,Phys. Lett. 97A:1–4 (1983).

    Google Scholar 

  13. S. P. Hastings, Single and Multiple Pulse Waves for the Fitzhugh-Nagumo Equations,SIAM J. Appl. Math. 42(2):247–260 (1982).

    Google Scholar 

  14. J. Evans, N. Fenichel, and J. A. Feroe, Double Impulse Solutions in Nerve Axon Equations,SIAM J. Appl. Math. 42(2):219–234 (1983).

    Google Scholar 

  15. J. A. Feroe, Existence and Stability of Multiple Impulse Solutions of a Nerve Axon Equation,SIAM J. Appl. Math. 42(2):235–246 (1983).

    Google Scholar 

  16. C. Sparrow,The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Appl. Math. Sci. No. 41 (Springer-Verlag, New York, 1982).

    Google Scholar 

  17. E. N. Lorenz, Deterministic Non-Periodic Flows,J. Atmos. Sci. 20:130–141 (1963).

    Google Scholar 

  18. R. Rössler, F. Gotz, and O. E. Rössler, Chaos in Endocrinology,Biophys. J. 25:216A (1979).

    Google Scholar 

  19. C. Sparrow, Chaos in a Three-Dimensional Single Loop Feedback System with a Piece-wise Linear Feedback Function,J. Math. Anal. Appl. 83:275–291 (1981).

    Google Scholar 

  20. O. E. Rössler, The Gluing Together Principle and Chaos, inNon-linear Problems of Analysis in Geometry and Mechanics, M. Atteia, D. Bancel, and I. Gumowski, eds. (Pitman, New York, 1981), pp. 50–56.

    Google Scholar 

  21. B. Uehleke, Chaos in einem stuckweise linearen System: Analytische Resultate, Ph.D. thesis, Tübingen (1982).

  22. A. Arneodo, P. Coullet, and C. Tresser, Oscillators with Chaotic Behavior: An Illustration of a Theorem by Sil'nikov,J. Stat. Phys. 27:171–182 (1982).

    Google Scholar 

  23. O. E. Rössler, Continuous Chaos: Four Prototype Equations, inBifurcation Theory and Applications in Scientific Disciplines, O. Gurel and O. E. Rössler, eds., Proc. N.Y. Acad. Sci. No. 316, pp. 376–394 (1978).

  24. E. Knobloch and N. O. Weiss, Bifurcations in a Model of Magnetoconvection,Physica 9D:379–407 (1983).

    Google Scholar 

  25. A. Bernoff, Preprint, University of Cambridge (1984).

  26. E. Knobloch and N. O. Weiss, Bifurcations in a Model of Double-Diffusive Convection,Phys. Lett. 85A(3):127–130 (1981).

    Google Scholar 

  27. D. R. Moore, J. Toomre, E. Knobloch, and N. O. Weiss, Chaos in Thermosolutal Convection: Period Doubling for Partial Differential Equations,Nature 303: (1983).

  28. P. Gaspard and G. Nicolis, What Can We Learn from Homoclinic Orbits in Chaotic Dynamics?J. Stat. Phys. 31:499–518 (1983).

    Google Scholar 

  29. P. Gaspard, R. Kapral, and G. Nicolis, Bifurcation Phenomena near Homoclinic Systems: A Two-Parameter Analysis, This Issue,J. Stat. Phys. 35:697 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glendinning, P., Sparrow, C. Local and global behavior near homoclinic orbits. J Stat Phys 35, 645–696 (1984). https://doi.org/10.1007/BF01010828

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010828

Key words

Navigation