Skip to main content
Log in

Escape from a metastable state

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Many important processes in science involve the escape of a particle over a barrier. In this review, we report, extend, and interpret various theories of noise-activated escape. We discuss the connection between many-body transition state theory and Kramers' original diffusive Brownian motion approach (both in one-and multidimensional potential fields) and emphasize the physical situation inherent in Kramers' rate for weak friction. A rate theory accounting for memory friction is presented together with a set of criteria which test its validity. The complications and peculiarities of noise-activated escape in driven systems exhibiting multiple, locally stable stationary nonequilibrium states are identified and illustrated. At lower temperatures, quantum tunneling effects begin to play an increasingly important role. Early approaches and more recent developments of the quantum version of Kramers approach are discussed, thereby providing a description for dissipative escape at all temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Kramers,Physica (Utrecht) 7:284 (1940).

    Google Scholar 

  2. S. Chandrasekhar,Rev. Mod. Phys. 15:1, 63–68 (1943).

    Google Scholar 

  3. H. C. Brinkman,Physica (Utrecht) 22:149 (1956).

    Google Scholar 

  4. R. Landauer and J. A. Swanson,Phys. Rev. 121:1668 (1961).

    Google Scholar 

  5. J. S. Langer,Phys. Rev. Lett. 21:973 (1968);Ann. Phys. (N.Y.) 54:258 (1969).

    Google Scholar 

  6. B. Widom,J. Chem. Phys. 55:44 (1971)

    Google Scholar 

  7. H. Tomita, A. Ito, and H. Kidachi,Progr. Theor. Phys. 56:786 (1976)

    Google Scholar 

  8. P. B. Visscher,Phys. Rev. B 13:3272 (1976);14:347 (1976)

    Google Scholar 

  9. C. Blomberg,Physica (Utrecht) 86A:49 (1977)

    Google Scholar 

  10. N. G. Van Kampen,Suppl. Progr. Theor. Phys. 64:389 (1978)

    Google Scholar 

  11. R. S. Larson and M. D. Kostin,J. Chem. Phys. 72:1392 (1980)

    Google Scholar 

  12. J. L. Skinner and P. G. Wolynes,J. Chem. Phys. 69:2143 (1978);72:4913 (1980)

    Google Scholar 

  13. J. R. Montgomery, D. Chandler, and B. J. Berne,J. Chem. Phys. 70:4065 (1979); B. J. Berne, J. L. Skinner, and P. G. Wolynes,J. Chem. Phys. 73:4314 (1980)

    Google Scholar 

  14. R. F. Grote and J. T. Hynes,J. Chem. Phys. 74:4465 (1981)

    Google Scholar 

  15. M. Buttiker, E. P. Harris, and R. Landauer,Phys. Rev. B 28:1268 (1983)

    Google Scholar 

  16. M. Buttiker and R. Landauer,Phys. Rev. Lett. 52:1250 (1984).

    Google Scholar 

  17. H. Frauenfelder and P. G. Wolynes,Science 229:337 (1985).

    Google Scholar 

  18. J. Kurkijarvi,Phys. Rev. B 6, 832 (1972); L. D. Jackel, W. W. Webb, J. E. Lukens, and S. S. Pei,Phys. Rev. B 9:115(1974).

    Google Scholar 

  19. T. A. Fulton and L. N. Dunkleberger,Phys. Rev. B 9:4760 (1974).

    Google Scholar 

  20. W. de Boer and R. de Bryn Ouboter,Physica (Utrecht) 98B:185 (1980);Physica (Utrecht) 122B:1 (1983).

    Google Scholar 

  21. E. G. D. D'Agliano, P. Kumar, W. Schaich, and H. Suhl,Phys. Rev. B 11:2122 (1975);Proc. 24th Nobel Symposium on Collective Properties of Physical Systems (Academic Press, New York, 1973).

    Google Scholar 

  22. G. Iche and Ph. NozièresJ. Phys. (Paris) 37:1313 (1976); B. A. Huberman and J. B. Boyce,Solid State Commun. 25:843 (1978).

    Google Scholar 

  23. R. D. Young,J. Chem. Phys. 80:554 (1984).

    Google Scholar 

  24. D. Beece, L. Eisenstein, H. Frauenfelder, D. Good, M. C. Marden, L. Reinisch, A. H. Reynolds, L. B. Sorensen and K. T. Yue,Biochemistry 19:5147 (1980).

    Google Scholar 

  25. W. Doster,Biophysical Chemistry 17:97 (1983).

    Google Scholar 

  26. S. Mashimo,Macromolecules 9:91 (1976).

    Google Scholar 

  27. D. L. Hasha, T. Eguchi, and J. Jonas,J. Chem. Phys. 75:1570 (1981);J. Am. Chem. Soc. 104:2290 (1982).

    Google Scholar 

  28. G. Rothenberger, D. K. Negus, and R. M. Hochstrasser,J. Chem. Phys. 79:5360 (1983).

    Google Scholar 

  29. S. P. Velsko, D. H. Waldeck, and G. R. Fleming,J. Chem. Phys. 78:249 (1983);J. Chem. Phys. 65:59 (1982); S. H. Courtney and G. R. Fleming,Chem. Phys. Lett. 103:443 (1984); B. Bagchi and D. Oxtoby,J. Chem. Phys. 78:2735 (1983).

    Google Scholar 

  30. B. Otto, J. Schroeder, and J. Troe,J. Chem. Phys. 81:202 (1984); H. Hippler, V. Schubert, and J. Troe,J. Chem. Phys. 81:3931 (1984); H. Hippler and J. Troe,Int. J. Chem. Kin. 8:501 (1976).

    Google Scholar 

  31. J. C. Tully,Surf. Sci. 111:461 (1981); C. Caroli, B. Roulet and D. Saint-James,Phys. Rev. B 18:545 (1978).

    Google Scholar 

  32. S. Glasstone, K. J. Laidler, and H. Eyring,The Theory of Rate Processes (McGraw-Hill, New York, 1941); H. Eyring,J. Chem. Phys. 3:107, 492 (1935).

    Google Scholar 

  33. C. A. Wert and C. Zener,Phys. Rev. 76:1169 (1949); H. Fröhlich,The Theory of Dielectric (Calendron Press, Oxford, 1950).

    Google Scholar 

  34. A. Seeger,Encyclopedia of Physics, Vol. VII, part 1 (Springer, Berlin, 1955).

    Google Scholar 

  35. G. H. Vineyard,J. Phys. Chem. Solids 3:121 (1957).

    Google Scholar 

  36. S. A. Rice,Phys. Rev. 112:804 (1958); S. A. Rice and H. L. Frisch,J. Chem. Phys. 32:1046 (1960).

    Google Scholar 

  37. N. B. Slater,Theory of Unimolecular Reactions (Methuen, London, 1959);J. Chem. Phys. 24:1256 (1956).

    Google Scholar 

  38. H. R. Glyde,Rev. Mod. Phys. 39:373 (1967); K. J. Laidler and A. Tweedale,Adv. Chem. Phys,21:113 (1971), in particular see p. 117.

    Google Scholar 

  39. P. Pechukas,Ann. Rev. Phys. Chem. 29:59 (1978);Ber. Bunsenges. Phys. Chem. 86:372 (1982).

    Google Scholar 

  40. C. W. Gardiner,J. Stat. Phys. 30:157 (1983).

    Google Scholar 

  41. G. H. Vineyard and J. Krumhansl,Phys. Rev. B 31:4929 (1985).

    Google Scholar 

  42. H. Grabert, P. Hanggi, and P. Talkner,J. Stat. Phys. 22:537 (1980).

    Google Scholar 

  43. K. Kawasaki,J. Phys. A6:1289 (1973).

    Google Scholar 

  44. O. Klein,Ark. Mat. Astr. Fys. 16, No 5 (1922).

    Google Scholar 

  45. H. D. Vollmer and H. Risken,Physica (Utrecht) 110A:106 (1982); K. Voigtlaender and H. Risken,Chem. Phys. Lett. 105:506 (1984);J. Stat. Phys. 40:397 (1985).

    Google Scholar 

  46. H. Risken and K. Voigtlaender,J. Stat. Phys. 41:825 (1985).

    Google Scholar 

  47. G. Wilemski,J. Stat. Phys. 14:153 (1976); U. M. Titulaer,Physica (Utrecht) 91A:321 (1978);100A:251 (1980); H. Risken, H. D. Vollmer, and M. Morsch,Z. Phys. B40:343 (1980); P. Grigolini and F. Marchesoni, in Memory function approaches to stochastic problems in condensed matter,Adv. Chem. Phys. 62, 1, 29 (1985);Physica (Utrecht) 121A:269 (1983); M. San Miguel and J. M. Sancho,J. Stat. Phys. 22:605 (1980); F. Haake,Z. Phys. B48:31 (1982).

    Google Scholar 

  48. M. V. Smoluchowski,Ann. Phys. (Leipzig) 21:756 (1906);48:1103 (1915);Phys. Z. 17:557, 585 (1917).

    Google Scholar 

  49. P. Hanggi and H. Thomas,Phys. Rep. 88C:207–319 (1982), Section 3.2.

    Google Scholar 

  50. P. Hanggi,Helv. Phys. Acta 51:202 (1978);Z. Naturforsch. 33A:1380 (1978); P. Hanggi, F. Rosel, and D. Trautmann,Z. Naturforch. 33A:402 (1978); G. Grosso and G. Pastori Parravicini,Adv. Chem. Phys. 62:81 (1985).

    Google Scholar 

  51. H. Risken,The Fokker-Planck Equation (Springer Series in Synergetics, No. 18, Springer, New York, 1984).

    Google Scholar 

  52. U. Weiss,Phys. Rev. A 25:2444 (1982) (Rapid Commun.); U. Weiss and W. Haffner, inFunctional Integration, J. P. Antoine and E. Tirapegui, eds. (Plenum, New York, 1980).

    Google Scholar 

  53. G. H. Weiss,Adv. Chem. Phys. 13:1 (1969).

    Google Scholar 

  54. B. J. Matkowsky and Z. Schuss,SIAM J. Appl. Math. 33:365 (1977);Z. Schuss, SIAM Rev. 22:119 (1980); see also D. Ludwig,SIAM Rev. 17:605 (1975).

    Google Scholar 

  55. P. Hanggi and P. Talkner,Phys. Rev. Lett. 51:2242 (1983);Z. Phys. B45:79 (1981);Phys. Rev. A 32:1934 (1985); P. Talkner and P. Hanggi,Phys. Rev. A 29:768 (1984); P. Talkner and D. Ryter, inNoise in Physical Systems and I/f Noise, M. Savelli, G. Lecay, and J. P. Nougier, eds. (Elsevier Science Publ., New York, 1983).

    Google Scholar 

  56. S. R. Shenoy and G. S. Agarwal,Phys. Rev. A 29:1315 (1984); S. R. Shenoy,Phys. Rev. A 30:2849 (1984) (Rapid Commun.)

    Google Scholar 

  57. K. Schulten, Z. Schulten, and A. Szabo,J. Chem. Phys. 74:4426 (1981); see also A. Szabo, K. Schulten, and Z. Schulten,J. Chem. Phys. 72:4350 (1980).

    Google Scholar 

  58. G. H. Weiss and A. Szabo,Physica (Utrecht) 119A:569 (1983).

    Google Scholar 

  59. M. V. Smoluchowski,Z. Phys. Chem. 92:129 (1917).

    Google Scholar 

  60. P. Debye,Trans. Electro-Chem. Soc. 82:265 (1942).

    Google Scholar 

  61. F. C. Collins and G. E. Kimball,J. Colloid Sci. 4:425 (1949).

    Google Scholar 

  62. G. Wilemski and M. Fixman,J. Chem. Phys. 58:4009 (1972).

    Google Scholar 

  63. D. Shoup and A. Szabo,Biophys. J. 40:33 (1982).

    Google Scholar 

  64. F. A. Lindemann,Trans. Faraday Soc. 17:589 (1922); E. W. Montroll and K. E. Shuler,Adv. Chem. Phys. 1:361 (1958); J. Troe,Ann. Rev. Chem. Phys. 29:223 (1978);J. Chem. Phys. 66:4745 (1977); T. A. Bak and J. L. Lebowitz,Phys. Rev. 131:1138 (1963); S. E. Nielsen and T. A. Bak,J. Chem. Phys. 41:665 (1964).

    Google Scholar 

  65. M. Buttiker and R. Landauer,Phys. Rev. B 30:1551 (1984).

    Google Scholar 

  66. P. Hanggi and U. Weiss,Phys. Rev. A 29:2265 (1984).

    Google Scholar 

  67. M. Buttiker, in17th Int. Conf. Low Temp. Physics, Karlruhe 1984, U. Eckern et al., eds. (Elsevier Science Publ., Amsterdam, 1984), EP 18, p. 1155.

    Google Scholar 

  68. S. H. Northrup and J. A. McCammon,J. Chem. Phys. 72:4569 (1980); G. Van der Zwan and J. T. Hynes,J. Chem. Phys. 77:1295 (1982); S. H. Northrup and J. A. McCammon,J. Chem. Phys. 78:987 (1983).

    Google Scholar 

  69. M. Borkovec and B. J. Berne,J. Chem. Phys. 82:794 (1985).

    Google Scholar 

  70. B. J. Matkowsky, Z. Schuss, and E. Ben-Jacob,SIAM J. Appl. Phys. 42:835 (1982).

    Google Scholar 

  71. P. Hanggi and F. Mojtabai,Phys. Rev. A 26:1168 (1982) (Rapid Commun.); P. Hanggi,Springer Proc. Phys. 1:95 (1984).

    Google Scholar 

  72. S. A. Adelman,J. Chem. Phys. 64:124 (1976).

    Google Scholar 

  73. R. F. Fox,Phys. Rep. 48C:179 (1978).

    Google Scholar 

  74. P. Hanggi and H. Thomas,Z. Phys. B26:85 (1977); H. Grabert, P. Hanggi, and P. Talkner,Z. Phys. B26:389 (1977); P. Hanggi, H. Thomas, H. Grabert, and P. Talkner,J. Stat. Phys. 18:155 (1978).

    Google Scholar 

  75. R. F. Grote and J. T. Hynes,J. Chem. Phys. 73:2715 (1980); J. T. Hynes, inThe Theory of Chemical Reaction Rates, M. Baer, ed. (CRC Press, Boca Raton, Florida, in press).

    Google Scholar 

  76. P. Hanggi,J. Stat. Phys. 30:401 (1983).

    Google Scholar 

  77. B. Carmeli and A. Nitzan,Phys. Rev. A 29:1481 (1984).

    Google Scholar 

  78. M. M. Dygas, B. J. Matkowsky, and Z. Schuss,SIAM Appl. Math. (in press).

  79. P. Hanggi, H. Grabert, G. Ingold, and U. Weiss, Quantum theory of activated events in presence of long time memory,Phys. Rev. Lett. 55:761 (1985).

    Google Scholar 

  80. J. E. Straub, M. Borkovec, and B. J. Berne,J. Chem. Phys. 83:3172 (1985);J. Chem. Phys. (in press).

    Google Scholar 

  81. R. W. Zwanzig,Phys. Fluids 2:12 (1959).

    Google Scholar 

  82. B. Carmeli and A. Nitzan,Phys. Rev. Lett. 49:423 (1982); R. F. Grote and J. T. Hynes,J. Chem. Phys. 77:3736 (1982); A. Nitzan,J. Chem. Phys. 82:1614 (1985); A. G. Zawadzki and J. T. Hynes,Chem. Phys. Lett. 113:476 (1985).

    Google Scholar 

  83. B. J. Matkowsky, Z. Schuss, and C. Tier,J. Stat. Phys. 35:443 (1984).

    Google Scholar 

  84. G. Nicolis,Rep. Progr. Phys. 42:225 (1979).

    Google Scholar 

  85. N. G. Van Kampen,Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).

    Google Scholar 

  86. W. Horsthemke and R. Lefever,Noise Induced Transitions, Theory and Applications in Physics, Chemistry and Biology (Series in Synergetics, Vol. 15, Springer, New York, 1984);Fluctuations and Sensitivity in Nonequilibrium Systems (Springer Proc. Phys. Vol. I, eds. W. Horsthemke and D. K. Kondepudi, Springer, New York, 1984).

    Google Scholar 

  87. R. L. Stratonovich,Topics in the Theory of Random Noise, Vols. I and II (Gordon and Breach, New York, 1963/1966).

    Google Scholar 

  88. R. Landauer,J. Appl. Phys. 33:2209 (1962);Phys. Today 31:23 (1978).

    Google Scholar 

  89. V. De Giorgio and M. O. Scully,Phys. Rev. A 2:1170 (1970); R. Graham and H. Haken,Z. Phys. 237:31 (1970); R. Graham,Springer Tracts in Modern Physics 66:1 (1973); H. Haken,Rev. Mod. Phys. 47:67 (1975); J. F. Scott, M. Sargent III, and C. Cantrell,Opt. Commun. 15:13 (1975).

    Google Scholar 

  90. E. Abraham and S. D. Smith,Rep. Progr. Phys. 45:815 (1982); L. A. Lugiato,Progr. Optics 21:69 (1984); R. Bonifacia, M. Gronchi, and L. A. Lugiato,Phys. Rev. A18:2266 (1978); P. Hanggi, A. R. Bulsara, and R. Janda,Phys. Rev. A 22:671 (1980).

    Google Scholar 

  91. P. Hanggi,Phys. Lett. 78A:304 (1978); S. Faetti, P. Grigolini, and F. Marchesoni,Z. Phys. B47:353 (1982).

    Google Scholar 

  92. M. H. Devoret, J. M. Martinis, D. Esteve, and J. Clarke,Phys. Rev. Lett. 53:1260 (1984); T. Fonesca and P. Grigolini,Phys. Rev. A (in press).

    Google Scholar 

  93. P. Hanggi and P. Riseborough,Am. J. Phys. 51:347 (1983).

    Google Scholar 

  94. L. N. Epele, H. Fanchiatti, M. Spina, and H. Vucetich,Phys. Rev. A 31:2631 (1985).

    Google Scholar 

  95. M. Buttiker and R. Landauer, inNonlinear Phenomena at Phase Transitions and Instabilities, T. Riste, ed. (Plenum, New York, 1982), pp. 111–143.

    Google Scholar 

  96. V. Ambegaokar and B. J. Halperin,Phys. Rev. Lett. 22:1364 (1969); Yu. M. Ivanchenko and L. A. Zilberman,Sov. Phys. JETP 28:1272 (1969).

    Google Scholar 

  97. E. Ben-Jacob, D. J. Bergman, B. J. Matkowsky, and Z. Schuss,Phys. Rev. A 26:2805 (1982); E. Ben-Jacob, D. J. Bergman, Y. Imry, B. J. Matkowsky, and Z. Schuss,J. Appl. Phys. 54:6533 (1983); H. D. Vollmer and H. Risken,Z. Phys. 52B:259 (1983); P. Jung and H. Risken,Z. Phys. B54:357 (1984).

    Google Scholar 

  98. P. Fulde, L. Pietronero, W. R. Schneider, and S. Strassler,Phys. Rev. Lett. 35:1776 (1975); T. Geisel,Physics in Superionic Conductors, M. B. Salamon, ed. (Springer, New York 1979), p. 201; G. Gruner, A. Zawadovski, and P. M. Chaikin,Phys. Rev. Lett. 46:511 (1981).

    Google Scholar 

  99. P. Hanggi and H. Thomas,Phys. Rep. 88C:207 (1982), Section 4.3.

    Google Scholar 

  100. R. Graham and T. Tél,J. Stat. Phys. 35:729 (1984);37:709 (1984) (Addendum);Phys. Rev. A 31:1109 (1985);31:3364 (1985).

    Google Scholar 

  101. P. Hanggi, F. Marchesoni, and P. Grigolini,Z. Phys. B56:333 (1984); P. Hanggi, T. J. Mroczkowski, F. Moss, and P.V.E. McClintock,Phys. Rev. A 32: 695 (1985) (Rapid Commun.).

    Google Scholar 

  102. P. Hanggi and P. Riseborough,Phys. Rev. A 27:3379 (1983) (Rapid Commun.); C. Van den Broeck and P. Hanggi,Phys. Rev. A 30:2730 (1984).

    Google Scholar 

  103. P. Hanggi, H. Grabert, P. Talkner, and H. Thomas,Phys. Rev. A 29:371 (1984).

    Google Scholar 

  104. B. J. Matkowsky, Z. Schuss, C. Knessl, C. Tier, and M. Mangel,Phys. Rev. A 29:3359 (1984).

    Google Scholar 

  105. E. Wigner,Z. Phys. Chem. B19:203 (1932);Trans. Faraday Soc. 24:29 (1938).

    Google Scholar 

  106. R. P. Bell,Proc. R. Soc. (London) 13:204 (1933); Trans.Faraday Soc. 55:1 (1959); R. P. Bell,The Tunnel Effect in Chemistry (Chapman and Hall, London, 1980).

    Google Scholar 

  107. G. Alefeld,Phys. Rev. Lett. 12:372 (1964); C. P. Flynn,Phys. Rev. 171:682 (1982).

    Google Scholar 

  108. I. Affleck,Phys. Rev. Lett. 46:388 (1981); see also U. Weiss and W. Haeffner,Phys. Rev. D 27:2916 (1983).

    Google Scholar 

  109. R. Pirc and P. Gosar,Phys. Kond. Mater. 9:377 (1969).

    Google Scholar 

  110. L. M. Sander and H. B. Shore,Phys. Rev. B 3:1472 (1969);B12:1546 (1975).

    Google Scholar 

  111. J. A. Sussmann,Ann. Phys. (Paris) 6:135 (1971).

    Google Scholar 

  112. T. Holstein,Ann. Phys. (N.Y.) 8:325 (1959);8:343 (1959); D. Emin and T. Holstein,Ann. Phys. (N.Y.) 53:439 (1969).

    Google Scholar 

  113. C. P. Flynn and A. M. Stoneham,Phys. Rev. 1B:3966 (1970).

    Google Scholar 

  114. J. J. Hopfield,Proc. Natl. Acad. Sci. 71:3640 (1974); inTunneling in Biological SSystems, B. Chanceet al., eds. (Academic Press, New York, 1979).

    Google Scholar 

  115. W. A. Phillips,Philos. Mag. 34:983 (1976).

    Google Scholar 

  116. P. Riseborough,Phys. Stat. Solidi 117B:381 (1983);Ann. Phys. (N.Y.) 153:1 (1984).

    Google Scholar 

  117. J. P. Sethna,Phys. Rev. B24:698 (1981); B25:5050 (1982); doctoral thesis, Princeton University, 1981.

    Google Scholar 

  118. A. J. Leggett,J. Phys. (Paris) C6:1264 (1978);Progr. Theor. Phys. Suppl. 69:80 (1980);80:10 (1984).

    Google Scholar 

  119. A. O. Caldeira and A. J. Leggett,Phys. Rev. Lett. 46:211 (1981);Ann. Phys. (N.Y.) 149:374 (1983);153:445 (1984) (Erratum).

    Google Scholar 

  120. R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965); R. P. Feynman,Statistical Mechanics (Benjamin, New York, 1972), Chap. 3.

    Google Scholar 

  121. H. Grabert, U. Weiss and P. Hanggi,Phys. Rev. Lett. 52:2193 (1984); see also Refs. 69, 115, 116 and H. Grabert, in SQUID85, H. D. Hahlbohm and H. Lubbig (eds.), (deGruyter, Berlin 1985).

    Google Scholar 

  122. R. P. Feynman,Phys. Rev. 97:660 (1955); R. P. Feynman and F. L. Vernon,Ann. Phys. (N.Y.) 24, 118 (1963); A. O. Caldeira and A. J. Leggett,Physica (Utrecht) 121A:587 (1983); A. Schmid,J. Low Temp. Phys. 49:609 (1982).

    Google Scholar 

  123. J. S. Langer,Ann. Phys. (N.Y.) 41:108 (1967).

    Google Scholar 

  124. S. Coleman,Phys. Rev. D 15:2929 (1977); C. G. Callan and S. Coleman,Phys. Rev. D 16:1762 (1977); S. Coleman, inThe Whys of Subnuclear Physics, A. Zichichi, ed. (Plenum, New York, 1979).

    Google Scholar 

  125. P. Riseborough, P. Hanggi, and E. Freidkin,Phys. Rev. A 32:489 (1985).

    Google Scholar 

  126. H. Grabert and U. Weiss,Phys. Rev. Lett. 53:1787 (1984).

    Google Scholar 

  127. A. I. Larkin and Yu. N. Ovchinnikov,Sov. Phys. JETP 59:420 (1984).

    Google Scholar 

  128. A. Schmid, Quasiclassical wave function in multidimensional quantum decay problems, preprint, 1985.

  129. T. Banks, C. M. Bender, and T. T. Wu,Phys. Rev. D 8:3346 (1973);8:3366 (1973); H. J. de Vega, J. L. Gervais, and B. Sakita,Phys. Rev. D 19:604 (1979).

    Google Scholar 

  130. U. Weiss, P. Riseborough, P. Hanggi, and H. Grabert,Phys. Lett. 104A:10 (1984);104A:492 (1984) (Erratum).

    Google Scholar 

  131. S. Chakravarty and A. J. Leggett,Phys. Rev. Lett. 52:5 (1984); S. Chakravarty,Phys. Rev. Lett. 49:681 (1982); A. J. Bray and M. A. Moore,Phys. Rev. Lett. 49:1546 (1982); B. Carmeli and D. Chandler,J. Chem. Phys. 82:3400 (1985).

    Google Scholar 

  132. S. Chakravarty and S. Kivelson,Phys. Rev. Lett. 50:1811 (1983);51:1109 (1983) (Erratum);Phys. Rev. B 32:76 (1985); H. Grabert and U. Weiss,Phys. Rev. Lett. 54:1605 (1985); M. P. A. Fisher and A. Dorsey,Phys. Rev. Lett. 54:1609 (1985).

    Google Scholar 

  133. P. Hanggi and P. Riseborough, unpublished; approximate weak friction quantum results, valid forT>ħω b/2πk, can be found in V. I. Melnikov,Sov. Phys. JETP 60:380 (1984).

    Google Scholar 

  134. V. I. Goldanskii,Dokl. Akad. Nauk. SSSR 124:1261 (1959);127:1037 (1959).

    Google Scholar 

  135. P. Ullersma,Physica (Utrecht) 32:27, 56, 74, 90 (1966).

    Google Scholar 

  136. R. J. Rubin,Phys. Rev. 131:964 (1963).

    Google Scholar 

  137. H. Grabert, U. Weiss, and P. Talkner,Z. Phys. B55:87 (1984); P. Riseborough, P. Hanggi, and U. Weiss,Phys. Rev. A 31:471 (1985); F. Haake and R. Reibold,Acta Physica Austriaca 56:37 (1985);Phys. Rev. A 32: 2462 (1985).

    Google Scholar 

  138. H. Frauenfelder, in Tunneling in Biological Systems, B. Chanceet al. eds. p. 627 ff, (Academic Press, New York, 1979); p. 627 ff N. Alberding, R. H. Austin, K. W. Beeson, S. S. Chan, L. Eisenstein, H. Frauenfelder, and T. M. Nordlund,Science 192:1002 (1976).

    Google Scholar 

  139. R. Di Foggio and R. Gomer,Phys. Rev. 525:3490 (1982); W. Rieheman and E. Nem-bach,J. Appl. Phys. 55:1081 (1984).

    Google Scholar 

  140. P. G. Wolynes,Phys. Rev. Lett. 47:968 (1981).

    Google Scholar 

  141. V. I. Melnikov and S. V. Meshkov,JETP Lett. 38:130 (1983).

    Google Scholar 

  142. S. Washburn, R. A. Webb, R. F. Voss, and S. M. Paris,Phys. Rev. Lett. 54:2712 (1985); R. F. Voss and R. A. Webb,Phys. Rev. Lett. 47:265 (1981); L. D. Jackelet al. Phys. Rev. Lett. 47:697 (1981); R. J. Pranceet al., Nature 289:543 (1981).

    Google Scholar 

  143. D. B. Schwartz, B. Sen, C. N. Archie, A. K. Jain, and J. E. Lukens,Phys. Rev. Lett. 55:1547 (1985).

    Google Scholar 

  144. L. D. Chang and S. Chakravarty,Phys. Rev. B 29:130 (1984); 30:1566 (1984) (Erratum).

    Google Scholar 

  145. H. Grabert, P. Olschowski, and U. Weiss,Phys. Rev. B 32:3348 (1985) (Rapid Commun.);Phys. Rev. Lett. (Comment) (in press).

    Google Scholar 

  146. P. Riseborough,J. Stat. Phys. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanggi, P. Escape from a metastable state. J Stat Phys 42, 105–148 (1986). https://doi.org/10.1007/BF01010843

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010843

Key words

Navigation