Skip to main content
Log in

Aluminium dissolution in NaF-AlF3-Al2O3 systems

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The rate of dissolution of electrolytically deposited aluminium was determined by the method of current reversal chronopotentiometry at a tungsten electrode in NaF−AlF3−Al2O3 melts of varying NaF/AlF3 molar ratios or cryolite ratios (CR). The temperature was maintained at 1031±3°C and the alumina content at 4 wt%. More accurate data were obtained by introducing delay times of various lengths (at zero current) between the cathodic and anodic current pulses, compared to direct current reversal chronopotentiometry with varying forward (deposition) times. The rate of aluminium dissolution increased with increasing NaF/AlF3 molar ratio, the curve showing an inflexion in the vicinity of CR=3. This inflexion indicates two dissolution mechanisms, one being predominant depending on the CR. The main reaction in acidic melts (CR<3) may be represented by

$$2Al(l) + AlF_6^{3 - } \rightleftarrows 3Al(I)F_x^{1 - x} + (6 - 3x)F^ - $$

while in basic melts (CR>3)

$$Al(l) + 3Na^ + \rightleftarrows 3Na(soln) + Al(III)$$

is the likely dominant mechanism. For 0.8<CR<5.7 the rate of dissolution is of the order of 10−7 mol cm−2s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Grjotheim et al. ‘Aluminium Electrolysis’, 2nd edn, Aluminium-Verlag, Dusseldorf (1982).

    Google Scholar 

  2. K. Grjotheim and H. Kvande, ‘Understanding the Hall-Heroult Process for Aluminium Production’, Aluminium-Verlag, Dusseldorf (1986).

    Google Scholar 

  3. K. Grjotheim and J. J. Welch, ‘Aluminium Smelter Technology’, Aluminium-Verlag, Dusseldorf (1980).

    Google Scholar 

  4. R. Oblakowski and Z. Orman,Arch. Hutn. 18 (1973) 39.

    Google Scholar 

  5. O. P. Bersimenko and M. M. Vetyukov,Zh. Prikl. Khim. 40 (1967) 195;J. Appl. Chem. U.S.S.R. (Eng. Trans.) 40 (1967) 177.

    Google Scholar 

  6. O. P. Bersimenko and M. M. Vetyukov,Sov. J. Non-Ferrous Met. 8 (1967) 71.

    Google Scholar 

  7. O. P. Bersimenko,Tr. Leningrad Politekh. Inst. 272 (1967) 73, inChem. Abstr. 70 (1967) 14756h.

    Google Scholar 

  8. J. J. Duruz and D. Landolt,J. Appl. Electrochem. 15 (1985) 393.

    Google Scholar 

  9. J. J. Duruz, G. Stehle and D. Landolt,Electrochim. Acta 26 (1981) 771.

    Google Scholar 

  10. K. A. Bowman, Doctorate Dissertation, University of Tennessee (1977).

  11. L. F. Mondolfo, ‘Aluminium Alloys: Structure and Properties’, Butterworths, London (1976) pp. 394–396.

    Google Scholar 

  12. E. Sum and M. Skyllas-Kazacos, unpublished data.

  13. R. K. Jain, H. C. Gaur and B. J. Welch,J. Electroanal. Chem. 79 (1977) 211.

    Google Scholar 

  14. J. Thonstad and S. Rolseth,Electrochim. Acta 23 (1978) 233.

    Google Scholar 

  15. L. N. Lozhkin and A. P. Popov,J. Appl. Chem. U.S.S.R. (Engl. Trans.) 41 (1968) 2277.

    Google Scholar 

  16. K. Yoshida, T. Ishihara and M. Yokoi,Trans. Met. Soc. AIME 242 (1968) 231.

    Google Scholar 

  17. R. Odegard, A. Sterten and J. Thonstad,Light Metals (1987) 389.

  18. F. Lantelme, D. Damianacos and M. Chemla,J. Electrochem. Soc. 127 (1980) 498.

    Google Scholar 

  19. Z. Qiu, N. Fong and K. Grjotheim,Light Metals (1983) 357.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sum, E., Skyllas-Kazacos, M. Aluminium dissolution in NaF-AlF3-Al2O3 systems. J Appl Electrochem 18, 731–738 (1988). https://doi.org/10.1007/BF01016900

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01016900

Keywords

Navigation