Skip to main content
Log in

Modeling of subsidence and stress-dependent hydraulic conductivity for intact and fractured porous media

  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Summary

This study investigates the changes in deformation and stress dependent hydraulic conductivities that occur as a result of underground mining in intact and fractured porous media. The intact porous medium is assumed to be comprised of regularly packed spherical grains of uniform size. The variation in grain size or pore space due to the effect of changing intergranular stresses results in a change in rock hydraulic conductivity. A model is developed to describe the sensitivity of hydraulic conductivity to effective stresses through Hertzian contact of spherical grains. The fractured porous medium is approximated as an equivalent fracture network in which a single fracture is idealized as a planar opening having a constant equivalent thickness or aperture. Changes in fracture aperture as a result of changes in elastic deformation control the variation of hydraulic conductivity. A model is presented to illustrate the coupling between strain and hydraulic conductivity. Subsidence induced deformations that result from mining induced changes in hydraulic conductivity in both intact and fractured media. These changes are examined and compared with results from a mining case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barton, N., Bandis, S., Bakhtar, K. (1985): Strength, deformation and conductivity coupling of rock joints. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22 (3), 121–140.

    Google Scholar 

  • Bear, J. (1972): Dynamics of fluids in porous media. American Elsevier Pub., Boulder, 764 pp.

    Google Scholar 

  • Biot, M. A. (1941): General theory of three dimensional consolidation. J. Appl. Phys. 12, 155–164.

    Google Scholar 

  • Brandt, H. (1955): A study of the speed of sound in porous granular media. J. Appl. Mech. 22, 479–486.

    Google Scholar 

  • De Wiest (ed.) (1969): Flow through porous media, Academic Press, London, 530 pp.

    Google Scholar 

  • Einstein, H. H., Dowding, C. H. (1981): Shearing resistance and deformability of rock joints. In: Touloukian, Y. S., Judd, W. R., Roy, R. F. (eds.), Physical properties of rocks and minerals, McGraw-Hill, New York, 177–220.

    Google Scholar 

  • Elsworth, D. (1989): Thermal permeability enhancement of blocky rocks: one dimensional flows. Int. J. Rock Mech., Min. Sci. Geomech. Abstr. 26 (3/4), 329–339.

    Google Scholar 

  • Elsworth, D., Xiang, J. (1989): A reduced degree of freedom model for thermal permeability enhancement in blocky rock. Geothermics 18, 691–709.

    Google Scholar 

  • Freeze, R. A., Cherry, J. A. (1979): Groundwater. Prentice-Hall, Englewood Cliffs, 604 pp.

    Google Scholar 

  • Gale, J. E. (1982): The effects of fracture type (induced versus natural) of the stress-fracture closure-fracture permeability relationship. 23rd U.S. Rock Mech. Symp., Univ. of California, Berkeley, 290–298.

  • Gangi, A. F. (1978): Variation of whole and fractured porous rock permeability with confining pressure. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15(3), 249–257.

    Google Scholar 

  • Geertsma, J. (1957): The effect of fluid pressure decline on volumetric changes of porous rocks. Trans. AIME, 331.

  • Hasenfus, G. J., Johnson, K. L., Su, D. W. H. (1988): A hydrogeomechanical study of overburden aquifer response to longwall mining. In: Proc., 7th Int. Conf. Ground Control in Mining, Morgantown, WV, 149–162.

  • Hoek, E., Bray, J. W. (1977): Rock slope engineering, 2nd edn., Inst. Min. and Metall., London, 402 pp.

    Google Scholar 

  • Hubbert, M. K. (1940): The theory of ground water motion. J. Geol., 48, 785–944.

    Google Scholar 

  • Iwai, K. (1976): Fundamental studies of fluid flow through a single fracture. Ph.D. Dissertation, University of California, Berkeley, 268 pp.

    Google Scholar 

  • Jones, F. O. (1975): A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks. J. Petrol. Technol., 21–27.

  • Kozeny, J., Ber, S. (1927): Wiener Akad, Abt. 2a, 136, 271.

    Google Scholar 

  • Kranz, R. L., Frankel, A. D., Engelder, T., Scholz, C. H. (1979): The permeability of whole and jointed Barre granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 16(3), 225–234.

    Google Scholar 

  • Krumbein, W. C., Monk, G. D. (1943): Permeabillity as a function of the size parameters of unconsolidated sand. Trans. Am. Inst., Min. Metall. Petrol. Engng. 151, 153–163.

    Google Scholar 

  • Louis, C. (1969): Groundwater flow in rock masses and its influence on stability. Rock Mech. Res. Report 10, Imperial College, UK.

    Google Scholar 

  • Nur, A., Byerlee, J. D. (1971): An exact effective stress law for elastic deformation of rock with fluids. J. Geophys. Res. 76(26), 6414–6419.

    Google Scholar 

  • Robin, P. Y. F. (1973): Note on effective pressure. J. Geophys. Res. 78(14), 2434–2437.

    Google Scholar 

  • Rosso, R. S. (1976): A comparison of joint stiffness measurements in direct shear, triaxial compression, and in situ. Int. Rock Mech. Min. Sci. Geomech. Abstr. 13, 167–172.

    Google Scholar 

  • Scheidegger, A. E. (1957): The physics of flow through porous media. Macmillan, New York, 236 pp.

    Google Scholar 

  • Skempton, A. W. (1960): Effective stress in soils, concrete and rock. Pore pressure and suction in soils, Butterworths, London.

    Google Scholar 

  • Snow, D. T. (1968): Rock fracture spacings, openings, and porosities. J. Soil Mech. Found Div., Proc. ASCE 94, 73–91.

    Google Scholar 

  • Terzaghi, K. V. (1923): Die Berechung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Sitzungsber. Akad. Wiss. Wien Math Naturwiss. Ki. Abt. 2A, 132, 105.

    Google Scholar 

  • Timoshenko, S. (1934): Theory of elasticity, 1st edn., McGraw-Hill, New York 416 pp.

    Google Scholar 

  • Walsh, J. B. (1981): Effect of pore pressure and confining pressure on fracture permeability. Int. Rock Mech. Min. Sci. geomech. Abstr. 18(3), 429–435.

    Google Scholar 

  • Warren, J. E., Root, P. J. (1963): The behavior of naturally fractured reservoirs. J. Soc. Pet. Eng. 3, 245–255.

    Google Scholar 

  • Witherspoon, P. A., Wang, J. S. Y., Iwai, K., Gale, J. E. (1980): Validity of Cubic law for fluid flow in a deformable rock fracture. Water Resour. Res. 16(6), 1016–1024.

    Google Scholar 

  • Young, A., Low, P. F., Mclatchie, A. S. (1964): Permeability studies of argillaceous rocks. J. Geophys. Res. 69, 4237–4245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, M., Elsworth, D. Modeling of subsidence and stress-dependent hydraulic conductivity for intact and fractured porous media. Rock Mech Rock Engng 27, 209–234 (1994). https://doi.org/10.1007/BF01020200

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01020200

Keywords

Navigation