Skip to main content
Log in

Characterization of DSA®-type oxygen evolving electrodes: Choice of a coating

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In the search for a DSA®-type electrode for oxygen evolution in acidic solutions, nine binary coatings with IrO2, RuO2, Pt as conducting component, and TiO2, ZrO2, Ta2O5 as inert oxides, have been deposited on titanium, examined for their microstructural properties and tested for their electrocatalytic activity and anodic stability. Electrochemical “true” surfaces of the coatings were found to be dependent on structure and morphology: the mixtures that form a solid solution (RuO2−TiO2), or allow limited miscibility (IrO2−TiO2), show the lowest dispersion of active material. Differences in service lives, were attributed to differences in wear mechanism of the electrodes. It was found that Ti/IrO2 (70 mol%)-Ta2O5 (30 mol%) is by far the best electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Vercesi, J. Rolewicz, Ch. Comninellis, E. Plattner and J. Hinden,Thermochim. Acta, submitted.

  2. H. B. Beer, US Appl. 549 194 (1966), US 3 632 498 (1972) and US 3 711 385 (1973).

  3. O. De Nora, A. Nidola, G. Trisoglio and G. Bianchi Brit. Pat. 1 399 576 (1973).

  4. R. Hutchings, K. Müller, R. Kötz and S. Stucki,J. Mat. Sci. 19 (1984) 3987.

    Google Scholar 

  5. R. Kötz and S. Stucki,Electrochim. Acta 31 (1986) 1311.

    Google Scholar 

  6. C. Angelinetta, S. Trasatti, Lj. D. Atanasoska, Z. S. Minevski and R. T. Atanasoski,Mater. Chem. Phys. 22 (1989) 499.

    Google Scholar 

  7. S. Trasatti, ‘Electrodes of Conductive Metallic Oxides’, Elsevier, Amsterdam (1981).

    Google Scholar 

  8. Ch. Comninellis and G. P. Vercesi,J. Appl. Electrochem., submitted.

  9. S. Trasatti,Electrochim. Acta 29, (1984) 1503.

    Google Scholar 

  10. G.-W. Jang and K. Rajesliwar,J. Electrochem. Soc. 134 (1987) 1830.

    Google Scholar 

  11. L. D. Burke and M. McCarthy,Electrochim. Acta 29 (1984) 211.

    Google Scholar 

  12. R. S. Yeo, J. Orehotsky, W. Visscher and S. Srinivasan,J. Electrochem. Soc. 128 (1981) 1900.

    Google Scholar 

  13. A. De Battisti, G. Lodi, M. Cappadonia, G. Battaglia and R. Kötz,J. Electrochem. Soc. 136 (1989) 2596.

    Google Scholar 

  14. T. V. Varlamova, I. D. Belova, R. R. Shrifina, B. Sh. Galyamov, Yu. E. Roginskaya and Yu. N. Venetsev,Zh. Fiz. Khim. 64 (1990) 385.

    Google Scholar 

  15. J. Kolb, C. R. Franks and B. A. Schenker, US Pat. 3 793 164.

  16. J. Rolewicz, Ch. Comninellis, E. Plattner and J. Hinden,electrochim. Acta 33 (1988) 573.

    Google Scholar 

  17. Idem,Chimia 42 (1988) 75.

    Google Scholar 

  18. F. Hine, M. Yasuda and Y. Yoshida,J. Electrochem. Soc. 124 (1977) 500.

    Google Scholar 

  19. W. A. Gerrard and B. C. H. Steele,J. Appl. Electrochem. 8 (1978) 417.

    Google Scholar 

  20. Yu. E. Roginskaya, V. I. Bystrov and D. M. Shub,Zh. Neorg. Khim. 22 (1977) 201.

    Google Scholar 

  21. V. M. Lebedev, Yu. E. Roginskaya, N. L. Klimsenko, V. I. Bystrov and Yu. N. Venetsev,ibid.21 (1976) 1380.

    Google Scholar 

  22. J. Rolewicz, Doctoral thesis, Swiss Federal Institute of Technology, Dept. of Chem. Ingen., Thesis No. 662 (1987).

  23. C. L. McDaniel and S. J. Schneider,J. Res. Nat. Bur. Stand. 71A (1967) 119.

    Google Scholar 

  24. Ch. Comninellis, G. P. Vercesi and J. Hinden,Electrochim. Acta, submitted.

  25. S. Ardizzone, G. Fregonara and S. Trasatti,Electrochim. Acta 35 (1990) 263.

    Google Scholar 

  26. A. M. Feltham and M. Spiro,Chem. Rev. 71 (1971) 177.

    Google Scholar 

  27. T. Biegler, D. A. Rand and R. Woods,J. Electroanal. Chem. 29 (1971) 269.

    Google Scholar 

  28. R. F. Savinell, R. L. Zeller III and J. A. Adams,J. Electrochem. Soc. 137 (1990) 489.

    Google Scholar 

  29. D. V. Kokoulina, T. V. Ivanova, Yu. I. Krasovitskaya, Z. I. Kudrytavtseva and L. I. Krishtalik,Soviet Electrochem. 13 (1977) 1293.

    Google Scholar 

  30. L. D. Burke, O. J. Murphy, J. F. O'Neill and S. Venkatesan,J.C.S. Faraday I 73 (1977) 1659.

    Google Scholar 

  31. S. Trasatti and G. Buzzanca,J. Electroanal. Chem. 29 (1971) App. 1.

    Google Scholar 

  32. D. Galizzoli, F. Tanatardini and S. Trasatti,J. Appl. Electrochem. 5 (1975) 203.

    Google Scholar 

  33. T. Arikado, C. Iwakura and H. Tamura,Electrochimica Acta 22 (1977) 513.

    Google Scholar 

  34. K. Doblhofer, M. Metikos, Z. Ogumi and H. Gerischer,Ber. Bunsenges. Phys. Chem. 82 (1978) 1046.

    Google Scholar 

  35. L. D. Burke and O. J. Murphy,J. Electroanal. Chem. 96 (1979) 19.

    Google Scholar 

  36. S. Ardizzone, A. Carugati and S. Trasatti,ibid.126 (1981) 287.

    Google Scholar 

  37. S. Trasatti,Electrochim. Metall. 2 (1967) 12.

    Google Scholar 

  38. C. Iwakura, M. Inai, M. Manabe and H. Tamura,Denki Kagaku 48 (1980) 91.

    Google Scholar 

  39. C. G. Smith and Y. Okinaka,J. Electrochem. Soc. 130 (1983) 2149.

    Google Scholar 

  40. D. Stauffer,Phys. Rep. 54 (1979) 1.

    Google Scholar 

  41. ‘The Mathematics and Physics of Disordered Media’, Proceedings of a Workshop, Minneapolis, (edited by B. D. Hughes and B. W. Ninham), in ‘Lecture Notes in Mathematics’ (edited by A. Dold and B. Eckmann) vol. 1035, Springer-Verlag, Heidelberg (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comninellis, C., Vercesi, G.P. Characterization of DSA®-type oxygen evolving electrodes: Choice of a coating. J Appl Electrochem 21, 335–345 (1991). https://doi.org/10.1007/BF01020219

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01020219

Keywords

Navigation