Skip to main content
Log in

A surface instability detection apparatus

  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Summary

A surface instability detection apparatus for investigating axial splitting and spalling phenomena in rocks and rock-like materials is described. The apparatus simulates the conditions under which these phenomena occur and allows one to accurately measure them. Experimental results from tests on Berea sandstone are presented where the successive formation of spalling fractures was monitored with an acoustic emission system and the location of the seismic events was mapped. The test results show the potential for benchmark tests in determining the spalling tendency and characteristics of different rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Erf, R. K. (1974): Holographic nondestructive testing. Academic Press, New York.

    Google Scholar 

  • Ewy, R. T., Cook, N. G. W. (1990): Deformation and fracture around cylindrical openings in rock—I. Observations and analysis of deformations. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 27 (5), 387–407.

    Google Scholar 

  • Friedman, M., Bur, T. R. (1974): Investigations of the relations among residual strain, fabric, fracture and ultrasonic attenuation and velocity in rocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 11, 221–234.

    Google Scholar 

  • Hudson, J. A., Crouch, S. L., Fairhurst, C. (1972): Soft, stiff and servo-controlled testing machines: A review with reference to rock failure. Eng. Geol. 6, 155–189.

    Google Scholar 

  • Jacquot, P., Rastogi, P. K. (1983): Speckle metrology and holographic interferometry applied to the study of cracks in concrete. In: Wittmann, F. H. (ed.), Fracture mechanics of concrete. Elsevier Science, Amsterdam, 113–155.

    Google Scholar 

  • Labuz, J. F., Bridell, J. M. (1983). Reducing frictional constraint in compression testing through lubrication. Int. J. Rock Mech. Min. Sci Geomech. Abstr. 30 (4), 451–455.

    Google Scholar 

  • Labuz, J. F., Papamichos, E. (1991): Preliminary results of plane-strain testing of soft rock. In: Roegiers, J.-C. (ed.), Proc., 32nd U.S. Symp. on Rock Mechanics. Balkema, Rotterdam, 667–674.

    Google Scholar 

  • Landis, E., Ouyang, C., Shah, S. P. (1992): Automated determination of first P-wave arrival and AE location. J. Acoust. Emission.

  • Ord, A., Vardoulakis, I., Kajewski, R. (1991): Shear band formation in Gosford sandstone. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 28 (5), 397–409.

    Google Scholar 

  • Ortlepp, W. D. (1983): The mechanism and control of rockbursts. In: Budavari, S. (ed.), Rock mechanics in mining practice. S. Afr. Inst. Min. Met., Johannesburg, 257–281.

    Google Scholar 

  • Papamichos, E., Vardoulakis, I., Papanastasiou, P. (1988): Borehole stability in elastic rock with damage and microstructure. In: Fairhurst, C. (ed.), Proc., 2nd Int. Symp. on Rockbursts and Seismicity in Mines. Balkema, Rotterdam, 255–258.

    Google Scholar 

  • Peng, S., Johnson, A. M. (1972): Crack growth and faulting in cylindrical specimens of Chelmsford granite. Int. J. Rock Mech. Min. Sci. 9, 37–86.

    Google Scholar 

  • Santarelli, F. (1987): Theoretical and experimental investigation of the stability of the axisymmetric wellbore. Ph. D. Thesis, Imperial College, London.

    Google Scholar 

  • Schäpermeier, E. (1979): Formulierung eines Gebirgsschlagkriteriums für den Steinkohlenbergbau mit Hilfe eines Finite-Differenzen-Verfahrens. Veröff. IBF, Heft 83, University of Karlsruhe, Karlsruhe.

    Google Scholar 

  • Sondergeld, C. H., Estey, L. H. (1981): Acoustic emission study of microfracturing during the cyclic loading of Westerly granite. J. Geophys. Res. 86 (B4), 2915–2924.

    Google Scholar 

  • Stavropoulou, V. G. (1982): Behavior of brittle sandstone in plane-strain conditions. In: Proc., 23rd U.S. Symp. on Rock Mech., California, 351–358.

  • van den Hoek, P. J., Kooijman, A. P., Kenter, C. J., Khodaverdian, M., Hyland, C. R., McLennan, J. D. (1992): Size-dependency of hollow cylinder collapse strength. In: 67th Annual Technical Conference and Exhibition of the SPE, Washington, DC, SPE 24800, II, 351–360.

  • Vardoulakis, I., Frantziskonis, G. (1992): Micro-structure in kinematic-hardening plasticity. Europ. J. Mech. A/Solids 11 (4), 467–486.

    Google Scholar 

  • Vardoulakis, I., Labuz, J. F., Papamichos, E. (1991): Surface instability detection apparatus. U.S. patent 5,024,103.

  • Wawersik, W. R., Fairhurst, C. (1970): A study of brittle rock fracture in laboratory compression experiments. Int. J. Rock Mech. Min. Sci. 7 (5), 561–575.

    Google Scholar 

  • Wawersik, W. R., Rudnicki, J. W., Olsson, W. A., Holcomb, D. J., Chau, K. T. (1990): Localization of deformation in brittle rock: Theoretical and laboratory investigations. In: Shah, S. P., Swartz, S. E., Wang, M. L. (eds.), Proc. Int. Conference on Micromechanics of Failure of Quasi-Brittle Materials. Elsevier Science, London, 115–124.

    Google Scholar 

  • Yukutake, H. (1989): Fracturing process of granite inferred from measurements of spatial and temporal variations in velocity during triaxial deformations. J. Geophys. Res. 94 (B11), 15639–15651.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papamichos, E., Labuz, J.F. & Vardoulakis, I. A surface instability detection apparatus. Rock Mech Rock Engng 27, 37–56 (1994). https://doi.org/10.1007/BF01025955

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025955

Keywords

Navigation