Skip to main content
Log in

Wijsman convergence: A survey

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

A net 〈A λ〉 of nonempty closed sets in a metric space 〈X, d〉 is declaredWijsman convergent to a nonempty closed setA provided for eachx εX, we haved(x, A)=limλ d(x, A). Interest in this convergence notion originates from the seminal work of R. Wijsman, who showed in finite dimensions that the conjugate map for proper lower semicontinuous convex functions preserves convergence in this sense, where functions are identified with their epigraphs. In this paper, we review the attempts over the last 25 years to produce infinite-dimensional extensions of Wijsman's theorem, and we look closely at the topology of Wijsman convergence in an arbitrary metric space as well. Special emphasis is given to the developments of the past five years, and several new limiting counterexamples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attouch, H.:Variational Convergence for Functions and Operators, Pitman, New York, 1984.

    Google Scholar 

  2. Attouch, H., Azé, D., and Beer, G.: On some inverse problems for the epigraphical sum,Nonlinear Anal. 16 (1991), 241–254.

    Google Scholar 

  3. Attouch, H., Lucchetti, R., and Wets, R.: The topology of the ρ-Hausdorff distance,Annal. Mat. Pura. Appl. 160 (1991), 303–320.

    Google Scholar 

  4. Attouch, H. and Wets, R.: Isometries for the Legendre-Fenchel transform,Trans. Amer. Math. Soc. 296 (1986), 33–60.

    Google Scholar 

  5. Attouch, H. and Wets, R.: Quantitative stability of variational systems: I. The epigraphical distance,Trans. Amer. Math. Soc. 328 (1991), 695–730.

    Google Scholar 

  6. Azé, D.: Caractérisation de la convergence au sens de Mosco en terme d'approximation infconvolutives,Ann. Fac. Sci. Toulouse 8, (1986–1987), 293–314.

    Google Scholar 

  7. Azé, D. and Penot, J.-P.: Operations on convergent families of sets and functions,Optimization 21 (1990), 521–534.

    Google Scholar 

  8. Azé, D. and Penot, J.-P.: Qualitative results about the convergence of convex sets and convex functions, inOptimization and Nonlinear Analysis (Haifa, 1990), Res. Notes Math. Ser. 244, Longman, Harlow, 1992, pp. 1–24.

    Google Scholar 

  9. J.-P. Aubin and Frankowska, H.:Set-Valued Analysis, Birkhäuser, Boston, 1990.

    Google Scholar 

  10. Baronti, M. and Papini, P.-L.: Convergence of sequences of sets, inMethods of Functional Analysis in Approximation Theory, ISNM 76, Birkhäuser-Verlag, Basel, 1986.

    Google Scholar 

  11. Beer, G.: Metric spaces with nice closed balls and distance functions for closed sets,Bull. Austral. Math. Soc. 35 (1987), 81–96.

    Google Scholar 

  12. Beer, G.: An embedding theorem for the Fell topology,Michigan Math. J. 35 (1988), 3–9.

    Google Scholar 

  13. Beer, G.: Support and distance functionals for convex sets,Numer. Func. Anal. Optim. 10 (1989), 15–36.

    Google Scholar 

  14. Beer, G.: Convergence of continuous linear functionals and their level sets,Archiv. Math. 52 (1989), 482–491.

    Google Scholar 

  15. Beer, G.: Conjugate convex functions and the epi-distance topology,Proc. Amer. Math. Soc. 108 (1990), 117–126.

    Google Scholar 

  16. Beer, G.: Mosco convergence and weak topologies for convex sets and functions,Mathematika 38 (1991), 89–104.

    Google Scholar 

  17. Beer, G.: A Polish topology for the closed subsets of a Polish space,Proc. Amer. Math. Soc. 113 (1991), 1123–1133.

    Google Scholar 

  18. Beer, G.: Topologies on closed and closed convex sets and the Effros measurability of set valued functions,Sém. d'Anal. Convexe Montpellier (1991), exposé No 2.

  19. Beer, G.: The slice topology: A viable alternative to Mosco convergence in nonreflexive spaces,Sém. d'Anal. Convexe Montpellier (1991), exposé No 3;Nonlinear Anal. 19 (1992), 271–290.

  20. Beer, G.: Wijsman convergence of convex sets under renorming,Nonlinear Anal. 22 (1994), 207–216.

    Google Scholar 

  21. Beer, G.: Lipschitz regularization and the convergence of convex functions,Numer. Funct. Anal. Optim. 15 (1994), 31–46.

    Google Scholar 

  22. Beer, G. and Borwein, J.: Mosco convergence and reflexicity,Proc. Amer. Math. Soc. 109 (1990), 427–436.

    Google Scholar 

  23. Beer, G.: Mosco and slice convergence of level sets and graphs of linear functionals,J. Math. Anal. Appl. 175 (1993), 53–67.

    Google Scholar 

  24. Beer, G. and DiConcilio, A.: Uniform convergence on bounded sets and the Attouch-Wets topology,Proc. Amer. Math. Soc. 112 (1991), 235–243.

    Google Scholar 

  25. Beer, G., Lechicki, A., Levi, S., and Naimpally, S.: Distance functionals and the suprema of hyperspace topologies,Annal. Mat. Pura Appl. 162 (1992), 367–381.

    Google Scholar 

  26. Beer, G. and Lucchetti, R.: Weak topologies for the closed subsets of a metrizable space,Trans. Amer. Math. Soc. 335 (1993), 805–822.

    Google Scholar 

  27. Beer, G. and Lucchetti, R.: Well-posed optimization problems and a new topology for the closed subsets of a metric space,Rocky Mountain J. Math. 23 (1993), 1197–1220.

    Google Scholar 

  28. Beer, G. and Pai, D.: On convergence of convex sets and relative Chebyshev centers,J. Approx. Theory 62 (1990), 147–169.

    Google Scholar 

  29. Borwein, J. and Fabian, M.: On convex functions having points of Gateaux differentiability which are not points of Frechet differentiability, Preprint.

  30. Borwein, J. and Fitzpatrick, S.: Mosco convergence and the Kadec property,Proc. Amer. Math. Soc. 106 (1989), 843–852.

    Google Scholar 

  31. Borwein, J. and Vanderwerff, J.: Dual Kadec-Klee norms and the relationship between Wijsman, slice and Mosco convergence, Preprint, University of Waterloo.

  32. Castaing, C. and Valadier, M.:Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin, 1977.

    Google Scholar 

  33. Corradini, P.: Topologie sull' iperspazio di uno spazio lineare normato, Tesi di laurea, Universitá degli studi di Milano, 1991.

  34. Costantini, C., Levi, S., and Zieminska, J.: Metrics that generate the same hyperspace convergence,Set-Valued Analysis 1 (1993), 141–157.

    Google Scholar 

  35. Cornet, B.: Topologies sur les fermés d'un espace métrique, Cahiers de mathématiques de la décision 7309, Université de Paris Dauphine, 1973.

  36. Del Prete, I. and Lignola, B.: On the convergence of closed-valued multifunctions,Boll. Un. Mat. Ital. B 6 (1983), 819–834.

    Google Scholar 

  37. Diestel, J.:Geometry of Banach Spaces — Selected Topics, Lecture Notes in Math. 485, Springer-Verlag, Berlin, 1975.

    Google Scholar 

  38. Di Maio, G. and Naimpally, S.: Comparison of hypertopologies,Rend. Istit. Mat. Univ. Trieste 22 (1990), 140–161.

    Google Scholar 

  39. Effros, E.: Convergence of closed subsets in a topological space,Proc. Amer. Math. Soc. 16 (1965), 929–931.

    Google Scholar 

  40. Engelking, R.:General Topology, Polish Scientific Publishers, Warsaw, 1977.

    Google Scholar 

  41. Fell, J.: A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space,Proc. Amer. Math. Soc. 13 (1962), 472–476.

    Google Scholar 

  42. Francaviglia, S., Lechicki, A., and Levi, S.: Quasi-uniformizationn of hyperspaces and convergence of nets of semicontinuous multifunctions,J. Math. Anal. Appl. 112 (1985), 347–370.

    Google Scholar 

  43. Hess, C.: Contributions à l'étude de la mesurabilité, de la loi de probabilité, et de la convergence des multifunctions, Thèse d'état, Montpellier, 1986.

  44. Hiriart-Urruty, J.-B.: Lipschitzr-continuity of the approximate subdifferential of a convex function,Math. Scand. 47 (1980), 123–134.

    Google Scholar 

  45. Holá, L. and Lucchetti, R.: Comparison of hypertopologies, Preprint.

  46. Holmes, R.:Geometric Functional Analysis, Springer-Verlag, New York, 1975.

    Google Scholar 

  47. Hörmander, L.: Sur la fonction d'appui des ensembles convexes dans une espace localement convexe,Arkiv. Mat. 3 (1954), 181–186.

    Google Scholar 

  48. Joly, J.: Une famille de topologies sur l'ensemble des fonctions convexes pour lesquelles la polarité est bicontinue,J. Math. Pures Appl. 52 (1973), 421–441.

    Google Scholar 

  49. Klein, E. and Thompson, A.:Theory of Correspondences, Wiley, New York, 1984.

    Google Scholar 

  50. Kuratowski, K.:Topology, vol. 1, Academic Press, New York, 1966.

    Google Scholar 

  51. M. Lavie: Contribution a l'étude de la convergence de sommes d'ensembles aléatoires indépendants et martingales multivoques, Thèse, Montpellier, 1990.

  52. Lahrache, J.: Stabilité et convergence dans les espaces non réflexifs,Sém. d'Anal. Convexe Montpellier 21 (1991), exposé N° 10.

  53. Lahrache, J.: Slice topologie, topologies intermediares, approximées Baire-Wijsman et Moreau-Yosida, et applications aux problèmes d'optimisation convexes,Sém. d'Anal. Convexe Montpellier (1992), exposé N° 3.

  54. Lechicki, A. and Levi, S.: Wijsman convergence in the hyperspace of a metric space,Bull. Un. Mat. Ital. 1-B (1987), 439–452.

    Google Scholar 

  55. Matheron, G.:Random Sets and Integral Geometry, Wiley, New York, 1975.

    Google Scholar 

  56. Michael, E.: Topologies on spaces of subsets,Trans. Amer. Math. Soc. 71 (1951), 152–182.

    Google Scholar 

  57. Mosco, U.: Convergence of convex sets and of solutions of variational inequalities,Advances in Math. 3 (1969), 510–585.

    Google Scholar 

  58. Mosco, U.: On the continuity of the Young-Fenchel transform,J. Math. Anal. Appl. 35 (1971), 518–535.

    Google Scholar 

  59. Naimpally, S.: Wijsman convergence for function spaces,Rend. Circ. Palermo II 18 (1988), 343–358.

    Google Scholar 

  60. Naimpally, S. and Warrack, B.:Proximity Spaces, Cambridge University Press, Cambridge, 1970.

    Google Scholar 

  61. Penot, J.-P.: The cosmic Hausdorff topology, the bounded Hausdorff topology, and continuity of polarity,Proc. Amer. Math. Soc. 113 (1991), 275–286.

    Google Scholar 

  62. Penot, J.-P.: Topologies and convergences on the space of convex functions,Nonlinear Anal. 18 (1992), 905–916.

    Google Scholar 

  63. Poppe, H.: Einige Bemerkungen über den raum der abgeschlossen mengen,Fund. Math. 59 (1966), 159–169.

    Google Scholar 

  64. Phelps, R.:Convex, Functions, Monotone Operators, and Differentiability, Lecture Notes in Math. 1364, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  65. Sonntag, Y.: Convergence au sens de Mosco: théorie et applications à l'approximation des solutions d'inéquations, Thèse. Université de Provence, Marseille, 1982.

  66. Sonntag, Y. and Zalinescu, C.: Set convergences: An attempt of classification, inProc. Intl. Conf. Diff. Equations and Control Theory, Iasi, Romania, August, 1990. Revised version, to appear inTrans. Amer. Math. Soc.

  67. Tsukada, M.: Convergence of best approximations in a smooth Banach space,J. Approx. Theory 40 (1984), 301–309.

    Google Scholar 

  68. Wets, R.J.-B.: Convergence of convex functions, variational inequalities and convex optimization problems, in R. Cottle, F. Gianessi, and J.-L. Lions (eds.),Variational Equations and Complementarity Problems, Wiley, New York, 1980.

    Google Scholar 

  69. Wijsman, R.: Convergence of sequences of convex sets, cones, and functions,Bull. Amer. Math. Soc. 70 (1964), 186–188.

    Google Scholar 

  70. Wijsman, R.: Convergence of sequences of convex sets, cones, and functions, II,Trans. Amer. Math. Soc. 123 (1966), 32–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beer, G. Wijsman convergence: A survey. Set-Valued Anal 2, 77–94 (1994). https://doi.org/10.1007/BF01027094

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01027094

Mathematics Subject Classifications (1991)

Key words

Navigation