Skip to main content
Log in

Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We first consider the Boltzmann equation with a collision kernel such that all kinematically possible collisions are run at equal rates. This is the simplest Boltzmann equation having the compressible Euler equations as a scaling limit. For it we prove a stability result for theH-theorem which says that when the entropy production is small, the solution of the spatially homogeneous Boltzmann equation is necessarily close to equilibrium in the entropie sense, and therefore strongL 1 sense. We use this to prove that solutions to the spatially homogeneous Boltzmann equation converge to equilibrium in the entropie sense with a rate of convergence which is uniform in the initial condition for all initial conditions belonging to certain natural regularity classes. Every initial condition with finite entropy andp th velocity moment for some p>2 belongs to such a class. We then extend these results by a simple monotonicity argument to the case where the collision rate is uniformly bounded below, which covers a wide class of slightly modified physical collision kernels. These results are the basis of a study of the relation between scaling limits of solutions of the Boltzmann equation and hydrodynamics which will be developed in subsequent papers; the program is described here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation,Arch. Rat. Mech. Anal. 77:11–21 (1981).

    Google Scholar 

  2. L. Arkeryd, Asymptotic behavior of the Boltzmann equation with infinite range forces,Commun. Math. Phys. 86:475–484 (1982).

    Google Scholar 

  3. L. Arkeryd, Existence theorems for certain kinetic equations and large data,Arch. Rat. Mech. Anal. 103:139–150 (1988).

    Google Scholar 

  4. L. Arkeryd, Stability inL 1 for the spatially homogeneous Boltzmann equation,Arch. Rat. Mech. Anal. 103:151–168 (1988).

    Google Scholar 

  5. L. Arkeryd, R. Esposito, and M. Pulvirenti, The Boltzmann equation for weakly inhomogeneous data,Commun. Math. Phys. 11:393–407 (1987).

    Google Scholar 

  6. D. Bakry and M. Emery, Diffusions hypercontractives, inSéminaire de Probabilités XIX (Lecture Notes in Mathematics 1123) (Springer, New York, 1985), pp. 179–206.

    Google Scholar 

  7. C. Bardos, F. Golse, and D. Levermore, Fluid dynamical limits of kinetic equations I: formal derivations, preprint.

  8. A. R. Barron, Entropy and the central limit theorem,Ann. Prob. 14:366–342 (1986).

    Google Scholar 

  9. N. M. Blachman, The convolution inequality for entropy powers,IEEE Trans. Inform Theory 2:267–271 (1965).

    Google Scholar 

  10. L. D. Brown, A proof of the central limit theorem motivated byu the Cramer-Rao inequality, inStatistics and Probability: Essays in Honor of C. R. Rao, Kallianpuret al, eds. (North-Holland, Amsterdam, 1982), pp. 314–328.

    Google Scholar 

  11. R. Caflisch, The fluid dynamical limit of the nonlinear Boltzmann Iquation,Commun. Pure Appl. 33:651–666 (1980).

    Google Scholar 

  12. R. Caflisch and G. Papanicolau, The fluid dynamical limit of a nonlinear Boltzmann equation,Commun. Pure Appl. Math. 32:589–616 (1979).

    Google Scholar 

  13. T. Carleman, Sur la solution de l'équation intégrodifférential de Boltzmann,Acta Math. 60:91–146 (1933).

    Google Scholar 

  14. T. Carleman,Problèmes mathématique dans la théorie cinétique des gaz Almqvist Wiksells, Uppsala, 1957).

  15. E. A. Carlen, Superadditivity of Fisher's information and logarithmic Sobolev inequalities,J. Fund. Anal. 101:194–211 (1991).

    Google Scholar 

  16. E. A. Carlen and M. C. Carvalho, The central limit theorem, entropy production, and stability of the rate of convergence to equilibrium for the Boltzmann equation, inProceedings of the 1991 Sienna on Probabilistic Methods in Mathematical Physics, to appear.

  17. E. A. Carlen and Soffer, Entropy production by block variable summation central limit theorems,Commun. Math. Phys. 140:339–371 (1991).

    Google Scholar 

  18. E. A. Carlen and A. Soffer, Explicit entropy production bounds for convolution and central limit theorems with strong rate information, in preparation.

  19. C. Cercignani,H-theorem and trend to equilibrium in the kinetic theory of gases,Arch. Mech. 34:231–241 (1982).

    Google Scholar 

  20. C. Cercignani,The Boltzmann Equation and Its Applications (Springer-Verlag, New York, 1988).

    Google Scholar 

  21. I. Csizlar, Informationstheoretische Konvergenenzbegriffe im Raum der Wahrscheinlichkeitsverteilungen,Pub. Math. Inst. Hung. Acad. Sci. VII Ser. A 1962:137–157.

    Google Scholar 

  22. A. Dembo, Information Inequalities and Uncertainty Principles, Standford University Technical Report No. 75 (1990).

  23. A. DeMasi, R. Esposito, and J. Lebowitz, Incompressible Navier-Stokes and Euler limits of the Boltzmann equation,Commun. Pure Appl. Math. 42:1189–1214 (1989).

    Google Scholar 

  24. L. Desvillettes, Entropy dissipation rate and convergence in kinetic equations,Commun. Math. Phys. 123:687–702 (1989).

    Google Scholar 

  25. J. D. Deuschel and D. W. Stroock,Large Deviations (Academic Press, Boston, 1989).

    Google Scholar 

  26. G. DiBlasio, Strong solution for Boltzmann equation in the spatially homogeneous case,Boll. Unione Mat. It. 8:127–136 (1973).

    Google Scholar 

  27. G. DiBlasio, Differentiability of spatially homogeneous solutions of the Boltzmann equation in the non-Maxwellian case,Commun. Math. Phys. 38:331–352 (1974).

    Google Scholar 

  28. M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, I,Commun. Pure Appl. Math. 28:l-47 (1975).

    Google Scholar 

  29. M. Dresden,Kinetic Theory Applied to Hydrodynamics (Field Research Laboratory, Dallas, Texas, 1956).

    Google Scholar 

  30. T. Elmroth, Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range,Arch. Rat. Mech. Anal. 82:1–12 (1983).

    Google Scholar 

  31. T. Elmroth, On theH-function and convergence towards equilibrium for a spacehomogeneous molecular density,SIAM J. Appl. Math. 44:150–159 (1984).

    Google Scholar 

  32. G. Ford and G. Uhlenbeck,Lectures in Statistical Mechanics (American Mathematical Society, Providence, Rhode Island, 1963).

    Google Scholar 

  33. J. W. Gibbs,Elementary principles in statistical mechanics, developed with especial reference to the foundations of thermodynamics (Scribner, New York, 1902), esp. Theorem II, Chapter XI.

    Google Scholar 

  34. T. Gustafsson, GlobalL p properties for the spatially homogeneous Boltzmann equation,Arch. Rat. Mech. Anal. 103:1–38 (1988).

    Google Scholar 

  35. S. Kawashima, A. Matsumura, and T. Nishida, On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation,Commun. Math. Phys. 70:97–124 (1979).

    Google Scholar 

  36. S. Kullback, A lower bound for discrimination information in terms of variation,IEEE Trans. Inform. Theory 4:126–127 (1967).

    Google Scholar 

  37. M. Lachowicz, On the initial layer and tyhe existence theorem for the nonlinear Boltzmann equation,Math. Meth. Appl. Sci. 9:342–366 (1987).

    Google Scholar 

  38. J. Lebowitz and E. Montroll,Nonequilibrium Phenomena I: The Boltzmann Equation (North-Holland, Amsterdam, 1984).

    Google Scholar 

  39. E. H. Lieb, Proof of an entropy conjecture of Wehrl,Commun. Math. Phys. 62:35–41 (1978).

    Google Scholar 

  40. Ju. V. Linnik, An information theoretic proof of the central limit theorem with Lindeberg conditions,Theory Prob. Appl. 4:288–299 (1959).

    Google Scholar 

  41. Ju. V. Linnik, On certain connections of the information theory of C. Shannon and R. Fisher with the theory of symmetrization of random vectors, inTransactions of the Second Prague Conference on Information Theory (Academic Press, New York, 1960), pp. 313–327.

    Google Scholar 

  42. N. Maslova and Yu. Romanovskii, Justification of the Hubert method in the theory of Kinetic equations,Zh. Vychisl. Mat. Mat. Fiz. 27:1680–1689 (1987).

    Google Scholar 

  43. J. C. Maxwell, On the dynamical theory of gases,Phil. Trans. R. Soc. Lond. 157:49–88 (1867), esp. p. 63.

    Google Scholar 

  44. H. P. McKean, Speed of approach to equilibrium for Kac's caricature a Maxwellian gas,Arch. Rat. Mech. Anal. 21:343–367 (1966).

    Google Scholar 

  45. H. P. McKean, An exponential formula for solving Boltzmann's equation for a Maxellian gas,J. Comb. Theory 2:358–382 (1967).

    Google Scholar 

  46. H. P. McKean, Chapman-Enskog-Hilbert expansion for a class of solutions of the telegraph equation,J. Math. Phys. 8:547–552 (1967).

    Google Scholar 

  47. H. P. McKean, A simple model of the derivation of fluid mechanics from the Boltzmann equation,Bull. Am. Math. Soc. 75:1–10 (1969).

    Google Scholar 

  48. H. P. McKean, The central limit theorem for Carleman's equation,Isr. J. Math. 21:54–92 (1975).

    Google Scholar 

  49. D. Morgenstern, General existence and uniqueness proof for spatially homogeneous solutions of the Maxwell-Boltzmann equation in the case of Maxwellian molecules,Proc. Natl. Acad. Sci. USA 40:719–721 (1954).

    Google Scholar 

  50. D. Morgenstern, Analytical studies related to the Maxwell-Boltzmann equation,J. Rat. Mech. Anal. 4:154–183 (1955).

    Google Scholar 

  51. T. Nishida, Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the incompressible Euler equation,Commun. Math. Phys. 61:119–148 (1978).

    Google Scholar 

  52. C. E. Shannon and W. Weaver,The Mathematical Theory of Communication (University of Illinois Press, Urbana, Illinois, 1949).

    Google Scholar 

  53. T. Sideris, Formation of singularities in three-dimensional compressible fluids,Commun. Math. Phys. 101:475–485 (1985).

    Google Scholar 

  54. A. Stam, Some inequalities satisfied by the quantities of information of Fisher and Shannon,Inform. Control 2:101–112 (1959).

    Google Scholar 

  55. G. Toscani, Newa priori estimates for the spatially homogeneous Boltzmann equation, Ferrara preprint (1991).

  56. G. Toscani, Strong convergence towards equilibrium for a gas of Maxwellian pseudomolecules, Ferrara preprint (1991).

  57. C. Truesdell, On the pressures and flux of energy in a gas according to Maxwell's kinetic theory, Part II,J. Rat. Mech. Anal. 5:55–128 (1956).

    Google Scholar 

  58. G. Uhlenbeck, The statistical mechanics of non-equilibrium phenomena, 1954 Higgins Lectures, Mimeographed notes, Fine Hall Library, Princeton University, Princeton, New Jersey.

    Google Scholar 

  59. S. Ukai, On the existence of global solutions of mixed problem for nonlinear Boltzmann equation,Proc. Jpn. Acad. 50:179–184 (1974).

    Google Scholar 

  60. E. Wild, On Boltzmann's equation in the kinetic theory of gases,Proc. Comb. Phil. Soc. 47:602–609 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332.

On leave from C.F.M.C. and Departamento de Matemática da Faculdade de Ciencias de Lisboa, 1700 Lisboa codex, Portugal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlen, E.A., Carvalho, M.C. Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation. J Stat Phys 67, 575–608 (1992). https://doi.org/10.1007/BF01049721

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049721

Key words

Navigation