Skip to main content
Log in

Three-parameter model of turbulence: Heat transfer calculations

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. A. S. Ginevskii, V. A. Ioselevich, et al., “Methods of turbulent boundary layer calculation,” Itogi Nauki Tekh. VINITI AN SSSR, Ser. Mekh. Zhidk. Gaza,11, 155 (1978).

    Google Scholar 

  2. Turbulence [in Russian], Mashinostroenie, Moscow (1980).

  3. G. S. Glushko, “Turbulent boundary layer on a flat plate in an incompressible fluid,” Izv. Akad. Nauk SSSR, Mekh., No. 4, 13 (1965).

    Google Scholar 

  4. A. N. Sekundov, “Application of the differential equation for turbulent viscosity to the analysis of plane nonself-similar flows,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 114 (1971).

    Google Scholar 

  5. G. S. Glushko, “Differential equation for the scale of turbulence and calculation of the turbulent boundary layer on a flat plate,” in: Turbulent Flows [in Russian], Nauka, Moscow (1970), pp. 37–44.

    Google Scholar 

  6. W. P. Jones and B. E. Launder, “The calculation of low-Reynolds number phenomena with a two-equation model of turbulence,” Int. J. Heat Mass Transfer,16, 1119 (1973).

    Google Scholar 

  7. K. Hanjalic and B. E. Launder, “A Reynolds stress model of turbulence and its application to thin shear flows,” J. Fluid Mech.,52, 609 (1972).

    Google Scholar 

  8. K. Hanjalic and B. E. Launder, “Contribution towards a Reynolds stress closure for low-Reynolds-number turbulence,” J. Fluid Mech.,74, 593 (1976).

    Google Scholar 

  9. A. A. Pavel'ev, “Development of grid turbulence in a flow with a constant velocity gradient,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 38 (1974).

    Google Scholar 

  10. V. G. Lushchik, A. A. Pavel'ev, and A. E. Yakubenko, “Model of shear turbulence,” in: Fourth All-Union Conference on Theoretical and Applied Mechanics (Abstracts of Proceedings), Naukova Dumka, Kiev (1976).

    Google Scholar 

  11. V. G. Lushchik, A. A. Pavel'ev, and A. E. Yakubenko, “A three-parameter model of shear turbulence,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 13 (1978).

    Google Scholar 

  12. V. G. Lushchik, A. A. Pavel'ev, and A. E. Yakubenko, “Investigation of shear flows using a three-parameter model of turbulence,” in: Fifth All-Union Conference on Theoretical and Applied Mechanics (Abstracts of Proceedings), Nauka, Alma-Ata (1981), pp. 241–242.

    Google Scholar 

  13. V. G. Lushchik, A. A. Pavel'ev, and A. E. Yakubenko, “Investigation of the transition to turbulence in a boundary layer with high-intensity external perturbations using a three-parameter model,” in: Problems of Contemporary Mechanics, Part 1 [in Russian], Izd. MGU, Moscow (1983), pp. 127–138.

    Google Scholar 

  14. V. M. Eroshenko, A. V. Ershov, and L. I. Zaichik, “Calculation of turbulent incompressible flow in a circular pipe with suction through porous walls,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 87 (1982).

    Google Scholar 

  15. V. M. Ievlev, Turbulent Motion of High-Temperature Continua [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  16. Khanzhalik and Londer, “Allowance for irrotational stresses in the turbulent energy dissipation equation,” Teor. sn. Inzh. Raschetov,102, 149 (1980).

    Google Scholar 

  17. B. A. Kader and A. M. Yaglom, “Laws of similarity for turbulent wall flows,” Itogi Nauki Tekh. VINITI. Ser. Mekh. Zhidk. Gaza,15, 81 (1980).

    Google Scholar 

  18. G. N. Abramovich, S. Yu. Krasheninnikov, and A. N. Sekundov, Turbulent Flows in the Presence of Body Forces and Nonself-Similarity [in Russian], Mashinostroenie, Moscow (1975).

    Google Scholar 

  19. H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York (1968).

    Google Scholar 

  20. L. V. Kozlov, “Relation between aerodynamic heating and surface friction,” Izv. Akad. Nauk SSSR, Mekh. Mashinostr., No. 4, 108 (1963).

    Google Scholar 

  21. L. H. Back, R. F. Cuffel, and P. F. Massier, “Effect of wall cooling on the mean structure of a turbulent boundary layer in a low-speed gas flow,” J. Heat Mass Transfer,13, 1029 (1970).

    Google Scholar 

  22. L. V. Kozlov, “Experimental investigation of surface friction on a flat plate in a supersonic flow in the presence of heat transfer,” Izv. Akad. Nauk SSSR, Mekh. Mashinostr., No. 2, 11 (1963).

    Google Scholar 

  23. G.-G. Ferngol'ts, “External flows,” in: Turbulence [in Russian], Mashinostroenie, Moscow (1980), pp. 56–117.

    Google Scholar 

  24. L. G. Lenin, E. V. Kudryavtseva, Yu. A. Pakhotin, and V. G. Sviridov, “Temperature fields and heat transfer in turbulent liquid-metal flow on the thermal entrance length,” Teplofiz. Vys. Temp.,16, 1243 (1978).

    Google Scholar 

  25. E. M. Borishanskii, S. S. Kutateladze, I. I. Novikov, and O. S. Fedynskii, Liquid-Metal Heat Transfer Agents [in Russian], Atomizdat, Moscow (1976).

    Google Scholar 

  26. B. S. Petukhov, L. G. Genin, and S. A. Kovalev, Heat Transfer in Nuclear Power Plants [in Russian], Atomizdat, Moscow (1974).

    Google Scholar 

  27. B. A. Kader, “Heat transfer in turbulent liquid-metal channel flow with various conditions at the wall,” At. Energ.,48, 233 (1980).

    Google Scholar 

  28. N. B. Vargaftik, Handbook of Thermophysical Properties of Gases and Liquids [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 40–52, March–April, 1986.

The authors wish to thank V. I. Sizov for carrying out the calculations, the results of which are presented in Sec. 2 of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lushchik, V.G., Pavel'ev, A.A. & Yakubenko, A.E. Three-parameter model of turbulence: Heat transfer calculations. Fluid Dyn 21, 200–211 (1986). https://doi.org/10.1007/BF01050170

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01050170

Keywords

Navigation