Skip to main content
Log in

Asymptotic analysis of a spatially unstable Görtler vortex spectrum

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

A description of steady spatially unstable (i.e., intensifying downstream) vortices is obtained for large characteristic Reynolds and Görtler numbers. This analysis makes it possible to investigate on a rational basis the effect of viscosity and the nonparallelism of the boundary layer on the development of centrifugal flow instability. A complete investigation of the unstable Görtler vortex system establishes the relation between the problem in question and short wave neutral branch theory [5, 6], as well as the theory of longitudinal-transverse interaction between the boundary layer and the external flow near a curved surface [10, 11]. In the case of a concave surface the latter describes one of the characteristic unstable Görtler vortex regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. H. Görtler, “Über eine dreidimensionale Instabilität laminarer Grenzschichten an konkaven Wänden,” Nachr. Ges. Wiss. Goettingen, Fachgruppe 1, Neue Folge 2 (1940), p. 1.

  2. G. Hämmerlin, “Über das Eigenwertproblem der dreidimensionalen Instabilität laminarer Grenzschichten an konkaven Wänden,” J. Rat. Mech. Anal.,4, 279 (1955).

    Google Scholar 

  3. Th. Herbert, “On the stability of the boundary layer along a concave wall,” Arch. Mech. Stosow.,28, 1039 (1976).

    Google Scholar 

  4. J. M. Floryan and W. S. Saric, “Stability of Görtler vortices in boundary layers,” AIAA J.,20, 316 (1982).

    Google Scholar 

  5. P. Hall, “Taylor-Görtler vortices in fully developed or boundary-layer flows: linear theory,” J. Fluid Mech.,124, 475 (1982).

    Google Scholar 

  6. P. Hall and W. D. Lakin, “The fully nonlinear development of Görtler vortices in growing boundary layers,” Proc. R. Soc. Ser. A:415, 421 (1988).

    Google Scholar 

  7. P. Hall, “The linear development of Görtler vortices in growing boundary layers,” J. Fluid Mech.,130, 41 (1983).

    Google Scholar 

  8. P. Hall and J. Bennett, “Taylor-Görtler instabilities of To llmien-Schlicht ing waves and others flows governed by the interactive boundary layer equations,” J. Fluid Mech.,171, 441 (1988).

    Google Scholar 

  9. P. Hall, “The Görtler vortex instability mechanism in three-dimensional boundary layers,” Proc. R. Soc. London, Ser. A:399, 135 (1985).

    Google Scholar 

  10. S. B. Rozhko and A. I. Ruban, “Longitudinal-transverse interaction in a three-dimensional boundary layer,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 42 (1987).

    Google Scholar 

  11. S. B. Rozhko, A. I. Ruban, and S. N. Timoshin, “Interaction between a three-dimensional boundary layer and an elongated obstacle,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 39 (1988).

    Google Scholar 

  12. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover (1964).

  13. F. T. Smith, “Pipeflows distorted by nonsymmetric indentation or branching,” Mathematika (Gr. Brit.) Ser. 1:23, 62 (1976).

    Google Scholar 

  14. R. I. Sykes, “On three-dimensional boundary layer flow over surface irregularities,” Proc. R. Soc. London, Ser. A:373, 311 (1980).

    Google Scholar 

  15. H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 32–41, January–February, 1990.

The author is grateful to A. I. Ruban for his constant interest in the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timoshin, S.N. Asymptotic analysis of a spatially unstable Görtler vortex spectrum. Fluid Dyn 25, 25–33 (1990). https://doi.org/10.1007/BF01051293

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01051293

Keywords

Navigation