Skip to main content
Log in

The attractor—basin portrait of a cellular automaton

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Local space-time structures, such as domains and the intervening dislocations, dominate a wide class of cellular automaton (CA) behavior. For such spatially-extended dynamics regular domains, vicinities, and attractors are introduced as organizing principles to identify the discretized analogs of attractors, basins, and separatrices: structures used in classifying dissipative continuous-state dynamical systems. We describe the attractor-basin portrait of nonlinear elementary CA rule 18, whose global dynamics is largely determined by a single regular attracting domain. The latter's basin is analyzed in terms of subbasin and portal structures associated with particle annihilation. The conclusion is that the computational complexity of such CA is more apparent than real. Transducer machines are constructed that automatically identify domain and dislocation structures in space-time, count the number of dislocations in a spatial pattern, and implement an isomorphism between rule 18 and rule 90. We use a transducer to trace dislocation trajectories, and confirm that in rule 18, isolated dislocation trajectories, as well as a dislocation gas, agree extremely well with the classical model of annihilating diffusive particles. The CA efficiently transforms randomness of an initial pattern ensemble into a random walk of dislocations in space-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Wolfram,Theory and Applications of Cellular Automata (World Scientific, Singapore, 1986).

    Google Scholar 

  2. A. R. Smith, Simple computation-universal cellular spaces,J. ACM 18:339 (1971).

    Google Scholar 

  3. T. Toffoli, Cellular automata mechanics, Ph.D. thesis, University of Michigan, Michigan (1977).

    Google Scholar 

  4. S. Wolfram, Computation theory of cellular automata,Commun. Math. Phys. 96:15 (1984).

    Google Scholar 

  5. L. Hurd, Formal language characterizations of cellular automaton limit sets,Complex Systems 1:69 (1987).

    Google Scholar 

  6. E. R. Berlekamp, J. H. Conway, and R. K. Guy,Winning Ways for Your Mathematical Plays, Vol. 2 (Academic Press, New York, 1984).

    Google Scholar 

  7. T. Toffoli and N. Margolis,Cellular Automata Machines: A New Environment for Modeling (MIT Press, Cambridge, Massachusetts, 1987).

    Google Scholar 

  8. O. Martin, A. Odlyzko, and S. Wolfram, Algebraic properties of cellular automata,Commun. Math. Phys. 93:219 (1984).

    Google Scholar 

  9. K. Kaneko, Attractors, basin structures and information processing in cellular automata, inTheory and Applications of Cellular Automata, S. Wolfram, ed. (World Scientific, Singapore, 1986).

    Google Scholar 

  10. H. Ito, Intriguing properties of global structure in some classes of finite cellular automata,Physica 31D:318 (1988).

    Google Scholar 

  11. E. Jen, Cylindrical cellular automata,Commun. Math. Phys. 118:569 (1990).

    Google Scholar 

  12. S. Wolfram, Statistical mechanics of cellular automata,Rev. Mod. Phys. 55:601 (1983).

    Google Scholar 

  13. H. A. Gutowitz, J. D. Victor, and B. W. Knight, Local structure theory for cellular automata,Physica 28D:18 (1987).

    Google Scholar 

  14. W. Li, N. H. Packard, and C. G. Langton, Transition phenomena in cellular automata rule space,Physica 45D:77 (1990).

    Google Scholar 

  15. N. Boccara, J. Nasser, and M. Roger, Particle-like structures and their interactions in spatio-temporal patterns generated by one-dimensional deterministic cellular automaton rules,Phys. Rev. A 44:866 (1991).

    Google Scholar 

  16. J. Park, K. Steiglitz, and W. Thurston, Soliton-like behavior in automata,Physica 19D:423 (1986).

    Google Scholar 

  17. P. Grassberger, New mechanism for deterministic diffusion,Phys. Rev. A 28:3666 (1983).

    Google Scholar 

  18. C. G. Langton, Computation at the edge of chaos: Phase transitions and emergent computation, inEmergent Computation, S. Forrest, ed. (North-Holland, Amsterdam, 1990), p. 12.

    Google Scholar 

  19. K. Lindgren, Correlations and random information in cellular automata,Complex Systems 1:529 (1987).

    Google Scholar 

  20. D. R. J. Chillingworth,Differential Topology with a View to Applications (Pitman, London, 1976).

    Google Scholar 

  21. J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, New York, 1983).

    Google Scholar 

  22. J. P. Crutchfield and J. E. Hanson, Computational mechanics of cellular automata: Space and time machines, In preparation (1992).

  23. P. Grassberger, Chaos and diffusion in deterministic cellular automata,Physica D 10:52 (1984).

    Google Scholar 

  24. D. Griffeath,Additive and Cancellative Interacting Particle Systems (Springer, Berlin, 1979).

    Google Scholar 

  25. J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory, Languages, and Computation (Addison-Wesley, Reading, Massachusetts, 1979).

    Google Scholar 

  26. J. P. Crutchfield and K. Young, Computation at the onset of chaos, inEntropy, Complexity, and the Physics of Information, W. Zurek, ed. (Addison-Wesley, 1990), p. 223.

  27. J. P. Crutchfield, Reconstructing language hierarchies, inInformation Dynamics, H. A. Atmanspracher and H. Scheingraber, eds. (Plenum New York, 1991), p. 45.

    Google Scholar 

  28. R. E. Blahut,Principles and Practice of Information Theory (Addison-Wesley, 1987).

  29. D. A. Lind, Applications of ergodic theory and sofic systems to cellular automata,Physica 10D:36 (1984).

    Google Scholar 

  30. M. G. Nordahl, Formal languages and finite cellular automata,Complex Systems 3:63 (1989).

    Google Scholar 

  31. L. P. Hurd, Appendix. Table 10. Regular language complexities, inTheory and Applications of Cellular Automata, S. Wolfram, ed. (World Scientific, Singapore, 1986).

    Google Scholar 

  32. N. H. Packard, Complexity in growing patterns in cellular automata, inDynamical Behavior of Automata: Theory and Applications, J. Demongeot, E. Goles, and M. Tchuente, eds. (Academic Press, 1984).

  33. S. Wolfram, Universality and complexity in cellular automata,Physica 10D:1 (1984).

    Google Scholar 

  34. F. Harary,Graph Theory (Addison-Wesley, 1969).

  35. J. P. Crutchfield and J. E. Hanson, Computational mechanics of cellular automata: Space-time machines, In Preparation (1992).

  36. E. Jen, Aperiodicity in one-dimensional cellular automata,Physica 44D:121 (1990).

    Google Scholar 

  37. E. Jen, Exact solvability and quasiperiodicity of one-dimensional cellular automata,Non-linearity 4:251 (1990).

    Google Scholar 

  38. K. Eloranta and E. Nummelin, The kink of cellular automaton rule 18 performs a random walk, Technical Report A296, Helsinki University of Technology, Institute of Mathematics (1991).

  39. K. Lindgren and M. G. Nordahl, Complexity measures and cellular automata,Complex Systems 2:409 (1988).

    Google Scholar 

  40. J. P. Crutchfield, Subbasins, portals, and mazes: Transients in high dimensions,J. Nucl. Phys. B 5A:287 (1988).

    Google Scholar 

  41. J. P. Crutchfield and K. Young, Inferring statistical complexity,Phys. Rev. Lett. 63:105 (1989).

    Google Scholar 

  42. A. G. Cairns-Smith,Genetic Takeover and the Mineral Origins of Life (Cambridge University Press, New York, 1982).

    Google Scholar 

  43. J. P. Crutchfield, Spatio-temporal complexity in nonlinear image processing,IEEE Trans. Circ. Syst. 37:770 (1988).

    Google Scholar 

  44. J. P. Crutchfield and K. Kaneko, Are attractors relevant to turbulence?,Phys. Rev. Lett. 60:2715 (1988).

    Google Scholar 

  45. J. P. Crutchfield and K. Kaneko, Transients in high dimensions, In preparation (1992).

  46. J. P. Crutchfield and K. Kaneko, Phenomenology of spatio-temporal chaos, inDirections in Chaos, Hao Bai-lin, ed. (World Scientific, Singapore, 1987), p. 272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanson, J.E., Crutchfield, J.P. The attractor—basin portrait of a cellular automaton. J Stat Phys 66, 1415–1462 (1992). https://doi.org/10.1007/BF01054429

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01054429

Key words

Navigation