Skip to main content
Log in

Correlation between resin material variables and transverse cracking in composites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, the correlation between the resin material variables and the transverse cracking in composites is established. A theoretical model based on the fracture mechanics principle is built to describe thein situ failure process of transverse cracking. The central concept of the model is that the fracture is controlled by the plastic zone developed at the crack tip. Based on an approximate crack tip stress distribution, a quantitative representation is found to relate the laminate transverse cracking fracture toughness,G c(comp), to certain resin properties: fracture toughness,G c(resin), yield stress,σ y, Young's modulus,E, and residual stress build-up,σ R.G c(comp) values of several fibre-glass/epoxy laminate systems were measured using the double torsion technique. The experimental results are found to be interpreted reasonably well by the theory. As a result, a clear picture of transverse cracking emerges. It seems thatσ y 2/E plays a more dominant role thanG c(resin) in controllingG c(comp). The residual stressσ R can weaken the laminate significantly when its level is high. It is also shown that the failure model discussed here can be readily applied to laminate delamination failure as well as adhesive bond fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. W. Garrett andJ. E. Bailey,J. Mater. Sci. 12 (1977) 157.

    Google Scholar 

  2. A. Parvizi, K. W. Garrett andJ. E. Bailey,ibid. 13 (1978) 195.

    Google Scholar 

  3. A. Parvizi andJ. E. Bailey,ibid. 13 (1978) 2131.

    Google Scholar 

  4. J. E. Bailey, P. T. Curtis andA. Parvizi,Proc. Roy. Soc. A366 (1979) 599.

    Google Scholar 

  5. M. G. Bader, J. E. Bailey, P. T. Curtis andA. Parvizi, Proceedings of the 3rd International Symposium on the Mechanical Behaviour of Materials, Cambridge, UK, 20–24 August 1979 (Pergamon Press, Oxford, UK, Elmsford, New York (1980) Vol. 3, p. 227.

    Google Scholar 

  6. A. S. D. Wang andF. W. Crossman,J. Comp. Mater. Suppl. 14 (1980) 71.

    Google Scholar 

  7. F. W. Crossman, W. J. Warren, A. S. D. Wang andG. E. Law, Jr,ibid. 14 (1980) 88.

    Google Scholar 

  8. D. L. Flaggs andM. H. Kural,J. Comp. Mater. 16 (1982) 103.

    Google Scholar 

  9. C. C. Chamis, “Composite Materials”, Vol. 6, edited by L. J. Broutman and R. H. Krock (Academic Press, New York, 1974) pp. 40–3.

    Google Scholar 

  10. B. Harris,Met. Sci. 14 (1980) 351.

    Google Scholar 

  11. J. F. Knott, “Fundamentals of Fracture Mechanics” (Halsted Press, New York, 1973) p. 110.

    Google Scholar 

  12. D. Broek, “Elementary Engineering Fracture Mechanics” (Sijthoff and Noordhoff, The Netherlands, 1978) 119–20.

    Google Scholar 

  13. E. Orowan,Trans. Inst. Eng. Shipbuilders Scotland 89 (1945) 165.

    Google Scholar 

  14. G. R. Irwin, 9th International Congress on Applied Mechanics, VIII, Paper 101(II), University of Brussels (1957) p. 245.

  15. R. J. Young, “Development in Polymer Fracture — 1”, edited by E. H. Andrews (Applied Science Publishers, London, 1979) pp. 184–8.

    Google Scholar 

  16. I. M. Ward, “Mechanical Properties of Solid Polymers” (Wiley, New York, 1971) pp. 341–8.

    Google Scholar 

  17. B. W. Cherry, “Polymer Surfaces” (Cambridge University Press, Cambridge, UK, 1981).

    Google Scholar 

  18. W. D. Bascom, J. L. Bitner, R. J. Moulton andA. R. Siebert,Composites 11 (1980) 9.

    Google Scholar 

  19. S. M. Lee andR. D. Schile,J. Mater. Sci. 17 (1982) 2095.

    Google Scholar 

  20. S. M. Lee,J. Mater. Sci. Lett. 1 (1982) 511.

    Google Scholar 

  21. J. F. Knott, “Fundamentals of Fracture Mechanics” (Halsted Press, New York, 1973) p. 140.

    Google Scholar 

  22. D. Broek, “Elementary Engineering Fracture Mechanics” (Sijthoff and Noordhoff, The Netherlands, 1978) p. 175.

    Google Scholar 

  23. J. T. Barnby andB. Spencer,J. Mater. Sci. 11 (1976) 78.

    Google Scholar 

  24. A. J. Kinloch andJ. G. Williams,ibid. 15 (1980) 987.

    Google Scholar 

  25. S. Yamini andR. J. Young,ibid. 15 (1980) 1823.

    Google Scholar 

  26. J. F. Knott, “Fundamentals of Fracture Mechanics” (Halsted Press, New York, 1973) p. 69.

    Google Scholar 

  27. D. Broek, “Elemementary Engineering Fracture Mechanics” (Sijthoff and Noordhoff, Amsterdam, 1978) p. 96.

    Google Scholar 

  28. D. L. Hunston, W. D. Bascom andJ. L. Bitner, Abstracts of the papers presented at the 5th Annual Meeting of the Adhesion Society, Mobile, Alabama, 22–24 February (1982) Abstract 17a–17c.

  29. W. D. Bascom, R. L. Cottington, R. L. Jones andP. Peyser,J. Appl. Polymer Sci. 19 (1975) 2545.

    Google Scholar 

  30. W. D. Bascom andR. L. Cottington,J. Adhes. 7 (1976) 333.

    Google Scholar 

  31. D. L. Hunston, J. L. Rushford, J. L. Bitner, J. Oroshnik andW. S. Rose,J. Elastomers Plast. 12 (1980) 133.

    Google Scholar 

  32. A. J. Kinloch andS. J. Shaw,J. Adhes. 12 (1981) 59.

    Google Scholar 

  33. S. S. Wang, J. F. Mandell andF. J. McGarry,Int. J. Fract. 14 (1978) 39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.M. Correlation between resin material variables and transverse cracking in composites. J Mater Sci 19, 2278–2288 (1984). https://doi.org/10.1007/BF01058105

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01058105

Keywords

Navigation