Skip to main content
Log in

Light intensity and phototaxis in the house fly: Photonegativity in a yellow-eyed mutant

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Y-tube tests of phototactic behavior of house flies (Musca domestica L.) involving wild-type, yellow-eyed, and hybrid individuals were conducted under low (8 ft-candles, 86.1 lux) and high (1600 ft-candles, 17,222.8 lux) light intensities. The Y-tube design utilized either a clear or a dark stem leading to the branches where the photochoice was made. No significant differences were found in the responses of the wild-type and hybrid lines to either light intensity or Y-tube design. Significant differences were recorded for the yellow-eyed individuals only under high light intensities, whereas their behavior under low light conditions was indistinguishable from that of the wild phenotypes. Yellow-eyed flies showed a 68.6% photopositive response when tested in dark-stemmed Y-tubes under 1600 ft-candles intensity as compared to the 86.0% and 83.3% photopositive responses of the wild and hybrid lines, respectively. However, the yellow-eyed flies tested in the clear-stemmed Y-tubes under 1600 ft-candles showed only a 28.7% photopositive response—a clear reversal toward photonegativity. Light-dark adaptation of the highly sensitive yellow-pigmented eye while in the stem of the Y-tube is responsible for this switch toward photonegative behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benzer, S. (1967). Behavioral mutants ofDrosophila isolated by counter-current distribution.Proc. Natl. Acad. Sci. 58:1112–1119.

    Google Scholar 

  • Berthold, R., and Benton, A. W. (1970). Honey bee photoresponse as influenced by age. Part I. Workers.Ann. Entomol. Soc. Am. 63:136–139.

    Google Scholar 

  • Brown, F. A., and Hall, V. A. (1936). The directional influence of light uponDrosophila melanogaster Meig. and some of its eye mutants.J. Exp. Zool. 74:205–220.

    Google Scholar 

  • Carpenter, F. W. (1905). The reactions of the pomace fly (Drosophila ampleophila Loew) to light, gravity, and mechanical stimulationAm. Naturalist 39:157–171.

    Google Scholar 

  • Chabora, P. C. (1969). Mutant genes and the emigration behavior ofPhaenicia sericata.Evolution 23:65–71.

    Google Scholar 

  • Chabora, P. C. (1977). Genetic and visual components affecting mating in the house fly,Musca domestica. Submitted for publication.

  • Chabora, P. C., and Kessler, M. E. (1977). Light intensity effects on the activity and emigratory behavior of the house fly,Musca domestica. Behav. Genet. (submitted).

  • Dobzhansky, T., and Spassky, B. (1967). Effects of selection and migration on geotactic and phototactic behavior ofDrosophila.Proc. Roy. Soc. Lond. Ser. B 168:27–47.

    Google Scholar 

  • Dobzhansky, T., Spassky, B., and Sved, J. (1969). Effects of selection and migration on geotactic and phototactic behavior ofDrosophila. II.Proc. Roy. Soc. Lond. Ser. B 173:191–207.

    Google Scholar 

  • Fingerman, M. (1952). The role of eye pigment ofDrosophila melanogaster in photic orientation.J. Exp. Zool. 120:131–164.

    Google Scholar 

  • Grossfield, J. (1972). The use of behavioral mutants in biological control.Behav. Genet. 2:311–319.

    PubMed  Google Scholar 

  • Hadler, N. N. (1964a). Genetic influence on phototaxis inDrosophila melanogaster, Biol. Bull. 126:264–273.

    Google Scholar 

  • Hadler, N. N. (1964b). Heritability and phototaxis inDrosophila melanogaster.Genetics 50:1269–1277.

    PubMed  Google Scholar 

  • Hansens, E. J., and Valiela, I. (1967). Activity of the face fly in New Jersey.J. Econ. Entomol. 60:21–28.

    Google Scholar 

  • Hirsch, J. (1962). Individual differences in behavior and their genetic basis. In Bliss, E. L. (ed.),Roots of Behavior, Hoeber, New York.

    Google Scholar 

  • Hirsch, J., and Boudreau, H. (1958). Studies in experimental behavior genetics. I. The heritability of phototaxis in a population ofDrosophila melanogaster, J. Comp. Physiol. Psychol. 51:647–651.

    PubMed  Google Scholar 

  • Horridge, G. A. (1975).The Compound Eye and Vision in Insects, Clarendon Press, Oxford.

    Google Scholar 

  • Kirschfeld, K., and Franceschini, N. (1969). Ein Mechanismus zur Steuerung des Lichtflusses in den Rabdomeren des Komplexauges vonMusca.Kybernetik 6:13–22.

    PubMed  Google Scholar 

  • Knipling, E. F. (1972). Sterilization and other genetic techniques. InPest Control: Strategies for the Future, National Academy of Science, Washington, D.C., pp. 272–287.

    Google Scholar 

  • Mazokhin-Porshnyakov, G. A. (1969).Insect Vision, Plenum, New York.

    Google Scholar 

  • McCann, G. D., and MacGinitie, G. F. (1965). Optomotor response studies of insect vision.Proc. Roy. Soc. Lond. Ser. B 163:369–401.

    Google Scholar 

  • Pak, W., Grossfield, J., and White, N. (1969). Nonphototactic mutants in a study of vision ofDrosophila, Nature 222:351–354.

    PubMed  Google Scholar 

  • Pimentel, D., Nagel, W. P., and Madden, J. L. (1963). Space-time structure of the environment and the survival of parasite-host systems.Am. Naturalist 97:141–167.

    Google Scholar 

  • Pittendrigh, C. A. (1958). Adaptation, natural selection, and behavior. In: Roe, A., and Simpson, G. G. (eds.),Behavior and Evolution, Yale University Press, New Haven, pp. 390–416.

    Google Scholar 

  • Richmond, R. O. (1969). Heritability of phototactic and geotactic responses inDrosophila pseudoobscura.Am. naturalist 103:315–316.

    Google Scholar 

  • Rockwell, R. F., and Seiger, M. B. (1973). Phototaxis inDrosophila: A critical evaluation.Am. Scientist 61:339–345.

    Google Scholar 

  • Streck, P. (1972). Screening pigment and visual field of single retinula cells ofCalliphora. In Wehner, R. (ed.),Information Processing in the Visual System of Arthropods, Springer-Verlag, New York, pp. 128–131.

    Google Scholar 

  • Waddington, C. H., Woolf, H. G., and Perry, M. (1954). Environmental selection byDrosophila mutants.Evolution 8:89–96.

    Google Scholar 

  • Walcott, B. (1975). Anatomical changes during light-adaptation in insect compound eyes. In Horridge, G. A. (ed.),The Compound Eye and Vision in Insects, Clarendon Press, Oxford, pp. 20–33.

    Google Scholar 

  • Walton, P. D. (1970). The genetics of phototaxis inDrosophila melanogaster, Can. J. Genet. Cytol. 12:283–287.

    Google Scholar 

  • Wehner, R. (ed.) (1972).Information Processing in the Visual System of Arthropods, Springer-Verlag, New York.

    Google Scholar 

  • Whitten, M. J. (1970). Genetics of pests in their management. In Rabb, R. L., and Guthrie, F. E. (eds.),Concepts of Pest Management, North Carolina University Press, Chapel Hill, pp. 119–137.

    Google Scholar 

  • Wigglesworth, V. B. (1972).The Principles of Insect Physiology, Chapman and Hall, London.

    Google Scholar 

  • Wolkin, J. J., Mellon, A. D., and Contis, G. (1957). Photoreceptor structures. II,Drosophila melanogaster, J. Exp. Zool. 134:383–410.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by grants from the C.U.N.Y. Faculty Research Award Program (No. 10189) and N.I.H. 5-S05-RR-07064.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, M.E., Chabora, P.C. Light intensity and phototaxis in the house fly: Photonegativity in a yellow-eyed mutant. Behav Genet 7, 129–137 (1977). https://doi.org/10.1007/BF01066001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01066001

Key Words

Navigation