Skip to main content
Log in

Thermal expansion of the cubic (3C) polytype of SiC

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermal expansion of the cubic beta or (3C) polytype of SiC was measured from 20 to 1000° C by the X-ray diffraction technique. Over that temperature range, the coefficient of thermal expansion can be expressed as the second order polynominal: α11=3.19×10−6+ 3.60×10−9 T−1.68×10−12 T 2 (1/° C). It increases continuously from about 3.2×10−6/° C at room temperature to 5.1×10−6/° C at 1000° C, with an average value of 4.45 × 10−6/° C between room temperature and 1000° C. This trend is compared with other published results and is discussed in terms of structural contributions to the thermal expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Becker,Z. Physik 40 (1926) 37.

    Google Scholar 

  2. T. A. Taylor andR. M. Jones, in “Silicon Carbide, a High-Temperature Semiconductor” edited by J. R. O'Connor and J. Smiltens (Pergamon, Oxford, 1960) p. 147.

    Google Scholar 

  3. P. Popper andI. Mohyuddin, in “Special Ceramics 1964” edited by P. Popper (Academic Press, London, 1965) p. 45.

    Google Scholar 

  4. D. Clark andD. Knight, Royal Aircraft Establishment, Technical Report RAE-TR-65049, [AD464397] (1965).

  5. E. L. Kern, D. W. Hamill, H. W. Deem andH. D. Sheets,Mater. Res. Bull. 4 (1969) S25.

    Google Scholar 

  6. R. J. Price,Bull. Amer. Ceram. Soc. 48 (1969) 859.

    Google Scholar 

  7. H. Suzuki, T. Iseki andM. Ito,J. Nucl. Mater. 48 (1973) 247.

    Google Scholar 

  8. Y. S. Touloukian (ed), in “Thermophysical Properties of Matter” Vol. 13, (IFI/Plenum, New York, 1970) p. 874.

    Google Scholar 

  9. Powder Diffraction File, Card No. 29-1129 (JCPDS, International Center for Diffraction Data, Swarthmore, Pennyslvania, USA).

  10. J. Intrater andS. Hurwitt,Rev. Sci. Instr. 32 (1961) 905.

    Google Scholar 

  11. W. J. Campbell andC. Grain, U.S. Bureau of Mines, Report Investigation No. 5757 (1961).

  12. Z. Li, MSc Thesis in Ceramic Engineering, University of Washington, 1986.

  13. R. A. Fisher (ed), in “Statistical Methods for Research Workers” 13th edn. (Hafner, New York, 1958) p. 176.

    Google Scholar 

  14. F. L. Yaggee andF. G. Foote, Technical Report Argonne National Laboratory-7644 (1969).

  15. D. Taylor,Trans. Brit. Ceram. Soc. 83 (1984) 5.

    Google Scholar 

  16. R. M. Hazen andL. M. Finger, “Comparative Crystal Chemistry” (Wiley-Interscience, New York, 1984) p. 115.

    Google Scholar 

  17. H. D. Megaw,Mater. Res. Bull. 6 (1971) 1071.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Bradt, R.C. Thermal expansion of the cubic (3C) polytype of SiC. J Mater Sci 21, 4366–4368 (1986). https://doi.org/10.1007/BF01106557

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01106557

Keywords

Navigation