Skip to main content
Log in

The influence of morphology and molecular weight on ductile-brittle transitions in linear polyethylene

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The tensile behaviour of linear polyethylene was examined over a wide range of temperatures. Samples were prepared from low and medium molecular weight polymer with different morphologies, by varying the initial crystallization conditions. It was found that the temperature of the ductile-brittle transition was markedly different for different samples. In particular, low molecular weight polymer crystallized at a low degree of of supercooling, showed brittle behaviour over most of the temperature range, with a ductile-brittle transition near to room temperature. Rapidly quenched material, where the degree of supercooling is high, showed a very low ductile-brittle transition temperature, especially in high molecular weight polymer. The reasons for these differences in behaviour are discussed both at a phenomenological level and in terms of known structural differences between the different materials examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. K. V. Chan andJ. G. Williams,Polym. Eng. Sci. 21 (1981) 1026.

    Google Scholar 

  2. R. W. Truss, R. A. Duckett andI. M. Ward,J. Mater. Sci. 16 (1981) 1689.

    Google Scholar 

  3. G. Capaccio andI. M. Ward,Polymer 15 (1974) 233.

    Google Scholar 

  4. Idem, ibid. 16 (1975) 239.

    Google Scholar 

  5. G. Capaccio.T. A. Crompton andI. M. Ward,J. Polymer Sci. Polymer Phys. Ed. 14 (1976) 1641.

    Google Scholar 

  6. P. D. Coates andI. M. Ward,J. Mater. Sci. 15 (1980) 2897.

    Google Scholar 

  7. G. Capaccio, I. M. Ward, M. A. Wilding andG. W. Longman,J. Macromol. Sci. Phys. B15 (1978) 381.

    Google Scholar 

  8. N. Brown andM. Parrish,J. Polymer Sci. Polymer Lett. Ed. 10 (1972) 777.

    Google Scholar 

  9. I. M. Ward, “Mechanical Properties of Polymers”, 1st edn (Wiley, London, 1971).

    Google Scholar 

  10. J. R. Kastelic andE. Baer,J. Macromol. Sci. Phys. B7 (1973) 679.

    Google Scholar 

  11. D. C. Bassett andA. M. Hodge,Proc. Roy. Soc. London A377 (1981) 25.

    Google Scholar 

  12. D. C. Bassett, A. M. Hodge andR. H. Olley,Faraday Discuss. Chem. Soc. 68 (1979) 218.

    Google Scholar 

  13. J. Dlugosz, G. V. Fraser, D. Grubb, A. Keller, J. A. Odell andP. L. Goggin,Polymer 17 (1976) 471.

    Google Scholar 

  14. D. K. Backman andK. L. Devries,J. Polymer Sci. A17 (1969) 2125.

    Google Scholar 

  15. J. M. Haudin, “Plastic Deformation of Semicrystalline Polymers” Spring School on Plastic Deformation of Polymers, Les Houches, April (1982).

    Google Scholar 

  16. A. Peterlin,Kolloid Z.u. Polymere 233 (1969) 857.

    Google Scholar 

  17. J. Peterman, W. Kluge andH. Gleiter,J. Polymer Sci. Polymer Phys. Ed. 17 (1979) 1043.

    Google Scholar 

  18. E. Kamei andN. Brown, private communication on research at University of Pennsylvania (1982).

  19. A. Kelly, “Strong Solids”, 2nd edn (Clarendon Press, Oxford, 1973) p. 10.

    Google Scholar 

  20. I. M. Ward (ed.) “Advances in Oriented Polymers 1” (Applied Science Publishers, London, 1982) Ch. 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, N., Ward, I.M. The influence of morphology and molecular weight on ductile-brittle transitions in linear polyethylene. J Mater Sci 18, 1405–1420 (1983). https://doi.org/10.1007/BF01111960

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01111960

Keywords

Navigation