Skip to main content
Log in

A grain-boundary defect model for instability/stability of a ZnO varistor

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A defect model for the grain-boundary barrier has been proposed to explain the phenomena of voltage instability/stability of the ZnO varistor. The key element of the proposed model is the zinc interstitials which are present in the depletion layer as excess zinc, arising from the non-stoichiometric nature of ZnO. Both instability and stability have been described in terms of diffusion of these interstitials in the depletion layer, followed by chemical interactions with defects at the grain-boundary interface. Finally, a large body of experimental data is presented to indirectly validate the proposed defect model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Matsuoka,Jpn. J. Appl. Phys. 10 (1971) 736.

    Google Scholar 

  2. L. M. Levinson andH. R. Philipp,J. Appl. Phys. 46 (1975) 1332.

    Google Scholar 

  3. P. L. Hower andT. K. Gupta,ibid. 50 (1979) 4847.

    Google Scholar 

  4. G. E. Pike, in “Grain Boundaries in Semiconductors”, edited by H. J. Leamy, G. E. Pike and C. H. Seager (Elsevier, New York, 1982) pp. 369–79.

    Google Scholar 

  5. K. Eda andA. Iga,Jpn. J. Appl. Phys. 18 (1979) 997.

    Google Scholar 

  6. K. Eda, A. Iga andM. Matsuoka,J. Appl. Phys. 51 (1980) 2678.

    Google Scholar 

  7. C. G. Shirley andW. M. Paulson,ibid. 50 (1979) 5782.

    Google Scholar 

  8. K. Sato, Y. Takada, H. Maekawa, M. Ototake andS. Tominaga,Jpn. J. Appl. Phys. 19 (1980) 909.

    Google Scholar 

  9. S. Tominaga, Y. Shibuy, Y. Fujiwara, M. Imataki andT. Nitta, “Stability and Long Term Degradation of Metal Oxide Surge Arrester”, presented at 1979 IEEE Summer Power Meeting, Vancouver, BC, IEEE Transactions on Power Apparatus and Systems, Vol. PAS-99, No. 4, 1980) pp. 1548–1556.

    Google Scholar 

  10. W. Moldenhauer, K. H. BÄther, W. Brückner, D. Hizn andD. Bühling,Phys. Status Solidi (a) 67 (1981) 533.

    Google Scholar 

  11. T. K. Gupta, W. G. Carlson andP. L. Hower,J. Appl. Phys. 52 (1981) 4104.

    Google Scholar 

  12. K. Takahashi, T. Miyoshi, K. Meada, T. Yamazaki andS. Ohwada, in “Grain Boundaries in Semiconductors”, edited by J. H. Leamy, G. E. Pike and C. H. Seager (Elsevier, New York, 1982) pp. 399–404.

    Google Scholar 

  13. T. K. Gupta andW. G. Carlson,J. Appl. Phys. 53 (1982) 7401.

    Google Scholar 

  14. T. K. Gupta, W. G. Carlson andB. O. Hall, in “Grain Boundaries in Semiconductors”, ted by J. H. Leamy, G. E. Pike and C. H. Seager (Elsevier, New York, 1982) pp. 393–98.

    Google Scholar 

  15. M. H. Sukkar andH. L. Tuller, in “Grain Boundaries and Interfaces in Ceramics”, Advances in Ceramics, Vol. 7, edited by M. F. Yan and A. H. Heuer, (American Ceramic Society, Columbus, Ohio, 1983) pp. 71–90.

    Google Scholar 

  16. K. Lehovec,J. Chem. Phys. 21 (1953) 1123.

    Google Scholar 

  17. W. D. Kingery,J. Amer. Ceram. Soc. 57 (1974) 1.

    Google Scholar 

  18. G. Heiland andE. Mollwo, in “Solid State Physics”, Vol. 8, edited by F. Seitz and D. Turnbull (Academic Press, New York, 1959) p. 191.

    Google Scholar 

  19. D. G. Thomas,J. Phys. Chem. Solids 3 (1957) 229.

    Google Scholar 

  20. D. W. Hess, in “Surface and Interfaces in Ceramic and Ceramic-Metal Systems”, Materials Science Research, Vol. 14, edited by J. Pask and A. Evans (Plenum Press, New York, 1981) pp. 335–51.

    Google Scholar 

  21. W. D. Kingery, H. K. Bowen andD. R. Uhlmann, in “Introduction to Ceramics”, (Wiley, New York, 1976) Chs. 4 and 6.

    Google Scholar 

  22. R. Linder,Acta Chem. Scand. 6 (1952) 457.

    Google Scholar 

  23. W. J. Moore andE. L. Williams,Discus. Far. Soc. 28 (1959) 86.

    Google Scholar 

  24. K. Sato andY. Takada,J. Appl. Phys. 53 (1982) 8819.

    Google Scholar 

  25. R. W. Rice, in “Materials Science Research”, Vol. 3, edited by W. W. Kriegel and H. Palmour III (Plenum Press, New York, 1966) p. 387.

    Google Scholar 

  26. D. R. Clarke,J. Appl. Phys. 49 (1978) 2407.

    Google Scholar 

  27. M. F. Yan, R. M. Cannon, H. K. Bowen andR. L. Coble,J. Amer. Ceram. Soc. 60 (1977) 120.

    Google Scholar 

  28. J. Shi Choi andC. H. Yo,J. Phys. Chem. Solids 37 (1976) 1149.

    Google Scholar 

  29. H. J. Allsopp andJ. P. Roberts,Trans. Faraday Soc. 55 (1959) 1386.

    Google Scholar 

  30. N. Dupont-Pavlovsky, F. Caralp, P. Delhaes andJ. Amiell,Phys. Status Solidi (a) 35 (1976) 615.

    Google Scholar 

  31. W. Albers, C. Hass andH. J. Vink,Phillips Res. Repts. 18 (1963) 372.

    Google Scholar 

  32. T. K. Gupta, andW. G. Carlson, in “Grain Boundaries and Interfaces in Ceramics”, Advances in Ceramics, Vol. 7, edited by M. F. Yan and A. H. Heuer (American Ceramic Society, Columbus, Ohio, 1983) pp. 30–40.

    Google Scholar 

  33. R. Einzinge, in “Grain Boundaries in Semiconductors”, edited by H. J. Leamy, G. E. Pike and C. H. Seager (Elsevier, New York, 1982) pp. 343–55.

    Google Scholar 

  34. Y. M. Chiang, W. D. Kingery andL. M. Levinson,J. Appl. Phys. 53 (1982) 1765.

    Google Scholar 

  35. P. Emtage,ibid. 48 (1977) 4372.

    Google Scholar 

  36. W. G. Morris,J. Vac. Sci. Technol. 13 (1976) 92.

    Google Scholar 

  37. H. R. Philipp andL. Levinson,J. Appl. Phys. 50 (1979) 383.

    Google Scholar 

  38. J. E. May, US Patent 4 165 351, 21 August (1979).

  39. J. S. Kresge, US Patent 4 046 847, 6 September (1977).

  40. A. Iga, M. Matsuoka andT. Masuyama,Jpn. J. Appl. Phys. 15 (1976) 1161.

    Google Scholar 

  41. Idem, ibid. 15 (1976) 1847.

    Google Scholar 

  42. T. K. Gupta andR. L. Coble,J. Amer. Ceram. Soc. 51 (1968) 521.

    Google Scholar 

  43. R. L. Coble,J. Appl. Phys. 32 (1961) 793.

    Google Scholar 

  44. T. K. Gupta,J. Mater. Sci. 6 (1971) 25.

    Google Scholar 

  45. W. G. Carlson andT. K. Gupta,J. Appl. Phys. 53 (1982) 5746.

    Google Scholar 

  46. J. E. May, US Patent 4 042 535, 16 August (1977).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, T.K., Carlson, W.G. A grain-boundary defect model for instability/stability of a ZnO varistor. J Mater Sci 20, 3487–3500 (1985). https://doi.org/10.1007/BF01113755

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113755

Keywords

Navigation