Skip to main content
Log in

Intergranular fracture in 13 wt% chromium martensitic stainless steel

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fracture of 13 wt% chromium steel blades has been observed to occur in the intergranular mode in certain service failures. An attempt has been made in this study to identify the conditions in respect of material, loading and environment which may lead to intergranular fracture. Three different materials were subjected to varying heat treatments selected on the basis of fracture characteristics of as-received materials. It has been concluded that grain-boundary segregations of impurities and carbide precipitation, intergranular network of delta ferrite at prior austenitic grain boundaries, and a sufficient concentration of NaCl in conjunction with cyclic stress, promote intergranular fracture in a 13 wt% chromium steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Park andI. Fujita,Trans. ISI J. 21 (1981) B372.

    Google Scholar 

  2. C. J. Boyle andD. L. Newhouse,Met. Prog. 87 (1965) 61.

    Google Scholar 

  3. M. Kawai, K. Kawaguchi, H. Yoshida, E. Kanazawa andS. Mito,Tetsu-to-Hogane 61 (1975) 229.

    Google Scholar 

  4. G. V. Prabhu Gaunker, A. M. Huntz andP. Lacombe,Met. Sci. 14 (1980) 241.

    Google Scholar 

  5. S. K. Chaudhuri andR. Brook,Int. J. Fract. 12 (1976) 101.

    Google Scholar 

  6. B. F. Jones,Int. J. Fatigue October (1981) 167.

    Google Scholar 

  7. H. Ishii, Y. Sakakibara andR. Ebara,Met. Trans. A 13A (1982) 1521.

    Google Scholar 

  8. P. Doig, D. J. Chastell andP. E. J. Flewitt,ibid. 13A (1982) 913.

    Google Scholar 

  9. C. J. McMahon Jr, C. L. Briant andK. Banerjee,Fracture 1 (1977) 363.

    Google Scholar 

  10. C. L. Briant andS. K. Banerji,Met. Trans. A 10A (1979) 1729.

    Google Scholar 

  11. R. Guillou, M. Guttmann andPh. Dumoulin,Met. Sci. 15 (1981) 63.

    Google Scholar 

  12. D. J. Gooch,ibid. 16 (1982) 79.

    Google Scholar 

  13. J. Z. Briggs andT. D. Parker, “The Super 12% Chromium Steels” (Climax Molybdenum Company, New York, 1965) p. 6.

    Google Scholar 

  14. H. Kobayashi, R. Marakami andH. Nakzawa, “Fracture Mechanics and Technology”, Vol. 1, edited by G. C. Sin and C. L. Chow (Noordhoff, Alphen aan den Rijn, 1979) p. 205.

    Google Scholar 

  15. M. W. Lui andI. LeMay, “Microstructural Science”, Vol. 8 (Elsevier, New York, 1980) p. 341.

    Google Scholar 

  16. T. W. Crooker, D. F. Hasson andG. R. Yoder, ASTM STP 600, (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1976) p. 205.

    Google Scholar 

  17. R. J. Cooke, P. E. Irving, G. S. Booth andC. J. Beevers,Eng. Frac. Mech. 7 (1975) 69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhambri, S.K. Intergranular fracture in 13 wt% chromium martensitic stainless steel. J Mater Sci 21, 1741–1746 (1986). https://doi.org/10.1007/BF01114734

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01114734

Keywords

Navigation