Skip to main content
Log in

Fractography of unfilled and particulate-filled epoxy resins

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The objective of this work was to analyse and understand the types of fracture surface morphology found in unfilled and particulate-filled epoxy resins in the light of the thermomechanical history of the specimen (loading rate or duration of loading, temperature, strain at break). Short-term tensile tests and long-term creep tests were conducted at four different temperatures. The fracture surface features were analysed using the scanning electron and optical microscopes and, where suitable, an image analyser. In order to correlate these morphologies with certain regimes of crack velocity, fracture mechanics tests were also conducted, varying the crack speed between 10−7 and 102 m sec−1. In the case of the filled resin, the lifetime under static loading is governed by a phase of slow, sub-critical crack growth which is manifested by resin-particle debonding. Thereafter, the crack accelerates and finally may reach terminal velocities depending on the amount of stored elastic energy available at the moment of fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Rosen (ed.), “Fracture Processes in Polymeric Solids: Phenomena and Theory” (Interscience, New York, 1964).

    Google Scholar 

  2. B. W. Cherry andK. W. Thomson,J. Mater. Sci. 16 (1981) 1925.

    Google Scholar 

  3. M. J. Owen andR. G. ROSE,ibid. 10 (1975) 1711.

    Google Scholar 

  4. B. E. Nelson andD. T. Turner,Polym. Lett. 9 (1971) 677.

    Google Scholar 

  5. C. B. Bucknall, “Toughened Plastics” (Applied Science, London, 1977).

    Google Scholar 

  6. B. Stalder, Ph. Béguelin andH. H. Kausch,Int. J. Fracture 22 (1983) R47.

    Google Scholar 

  7. A. C. Moloney, H. H. Kausch, T. Kaiser andH-R. Beer,J. Mater. Sci. 22 (1987) 381.

    Google Scholar 

  8. R. J. Morgan andJ. E. O'Neal,ibid. 12 (1977) 1966.

    Google Scholar 

  9. M. Glad, PhD thesis, Cornell University (1986).

  10. J. W. Smith, T. Kaiser andA. C. Roulin-Moloney,J. Mater. Sci., submitted.

  11. H-R. Beer, T. Kaiser, A. C. Moloney andH. H. Kausch,J. Mater. Sci. 21 (1986) 3661.

    Google Scholar 

  12. H. Schardin, in “Fracture”, edited by B. L. Averbach, D. K. Felbeck, G. T. Hahn and D. A. Thomas (Wiley, New York, 1959) p. 297.

    Google Scholar 

  13. J. P. Dempsey andP. Burgers,Int. J. Fracture 27 (1985) 203.

    Google Scholar 

  14. Z. T. Bieniawski,ibid. 4 (1968) 415.

    Google Scholar 

  15. E. H. Yoffe,Phil. Mag. 42 (1951) 739.

    Google Scholar 

  16. K. Ravi-Chandar andW. G. Knauss,Int. J. Fracture 26 (1984) 141.

    Google Scholar 

  17. J. W. Johnson andD. G. Holloway,Phil. Mag. 14 (1966) 731.

    Google Scholar 

  18. G. K. Bansal,ibid. 35 (1977) 935.

    Google Scholar 

  19. J. D. Eshelby, in “Inelastic Behaviour of Solids”, edited by M. F. Kanninen, W. Alder, A. Rosenfield and R. Jaffe (McGraw-Hill, New York, 1970) p. 111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantwell, W.J., Roulin-Moloney, A.C. & Kaiser, T. Fractography of unfilled and particulate-filled epoxy resins. J Mater Sci 23, 1615–1631 (1988). https://doi.org/10.1007/BF01115700

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01115700

Keywords

Navigation