Skip to main content
Log in

Effect of transcrystalline morphology on interfacial adhesion in cellulose/polypropylene composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A study was conducted on the effect of cotton cellulose fibres on the crystallization behaviour of isotactic polypropylene (PP) from the melt and the resulting morphology. When the PP was allowed to crystallize isothermally at 131° C, the cotton fibres acted as nucleating agents and a transcrystalline phase was created around the fibres. Quench cooling of the melt prevented the occurrence of such a phase. Transcrystalline layers of different thicknesses were created by interrupting the isothermal crystallization at certain intervals and quenching the melt. The effect of these morphologies on interfacial shear stress transfer was investigated using the single-fibre fragmentation test. It was found that the transcrystalline morphology at the fibre/matrix interface improved the shear transfer considerably when a tensile load was applied in the fibre direction. One mechanism is proposed to be particularly responsible for this increase: slow cooling favours the kinetics of the approach of PP molecules, and hence interfacial adsorption, which yields an ordered transcrystalline PP interphase having a high density of intermolecular secondary bonds with the cellulose surface. An increase in the shear transfer efficiency with increasing thickness of the transcrystalline layer was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. L. Mittal,Polym. Eng. Sci. 17 (1977) 467.

    Google Scholar 

  2. L.-H. Lee, “Adhesive Bonding” (Plenum Press, New York, 1991).

    Google Scholar 

  3. B. S. Hsiao andE. J. H. Chen,Polym. Eng. Sci. 32 (1992) 280.

    Google Scholar 

  4. L. Caramaro, B. Chabert, J. Chauchard andT. Vukhanh,ibid. 31 (1991) 1279.

    Google Scholar 

  5. M. Avella, E. Martuscelli, B. Pascucci andM. Raimo,ibid. 32 (1992) 383.

    Google Scholar 

  6. J. Petermann, G. Broza, U. Rieck andA. Kawaguchi,J. Mater. Sci. 22 (1987) 1477.

    Google Scholar 

  7. D. Campbell andM. M. Qayyum,ibid. 12 (1977) 2427.

    Google Scholar 

  8. H. Schonhorn andF. W. Ryan,J. Polym. Sci. A-2 6 (1968) 231.

    Google Scholar 

  9. M. J. Folkes andS. T. Hardwick,J. Mater. Sci. 25 (1990) 2598.

    Google Scholar 

  10. N. J. Capiati andR. S. Porter,ibid. 10 (1975) 1671.

    Google Scholar 

  11. A. E. Zachariades, R. E. Ball andR. S. Porter,ibid. 13 (1978) 2671.

    Google Scholar 

  12. W. T. Mead andR. S. Porter,J. Appl. Polym. Sci. 22 (1978) 3249.

    Google Scholar 

  13. R. L. Brady andR. S. Porter,ibid. 39 (1990) 1873.

    Google Scholar 

  14. M. Masuoka,Int. J. Adhes. Adhesives 1 (1981) 256.

    Google Scholar 

  15. R. L. Hagenson, D. F. Register andD. A. Soules,SAMPE 34 (2) (1989) 2255.

    Google Scholar 

  16. T. Bessell andJ. B. Shortall,J. Mater. Sci. 10 (1975) 2035.

    Google Scholar 

  17. S. F. Xavier andY. N. Sharma,Angew. Makromol. Chem. 127 (1984) 145.

    Google Scholar 

  18. T. Bessell, D. Hull andJ. B. Shortall,Faraday Spec. Disc. Chem. Soc. 2 (1972) 137.

    Google Scholar 

  19. A. Bialski, R. St. J. Manley andH. P. Schreiber,Polym. Eng. Sci. 17 (1977) 456.

    Google Scholar 

  20. P. Zadorecki andA. J. Michell,Polym. Compos. 10 (1989) 69.

    Google Scholar 

  21. P. Zadorecki andP. Flodin,J. Appl. Polym. Sci. 30 (1985) 3971.

    Google Scholar 

  22. Idem, ibid. 30 (1985) 2419.

    Google Scholar 

  23. J. M. Felix andP. Gatenholm,J. Appl. Polym. Sci. 42 (1991) 609.

    Google Scholar 

  24. J. M. Felix, P. Gatenholm andH. P. Schreiber,J. Appl. Polym. Sci.,51 (1994) 285.

    Google Scholar 

  25. P. Gatenholm, J. M. Felix, C. Klason andJ. Kubát, in “Contemporary Topics in Polymer Science”, Vol. 7, edited by J. C. Salamone and J. S. Riffle (Plenum, New York, 1992) p. 75.

    Google Scholar 

  26. R. G. Raj, B. V. Kokta andC. Daneault,J. Adhes. Sci. Technol. 3 (1989) 55.

    Google Scholar 

  27. D. G. Gray,J. Polym. Sci. Polym. Lett. Ed. 12 (1974) 509.

    Google Scholar 

  28. I. Verpoest, M. Desaeger andR. Keunings, in “Controlled Interphases in Composite Materials”, edited by H. Ishida (Elsevier, New York, 1990) p. 653.

    Google Scholar 

  29. G. M. Dorris andD. G. Gray,Cellulose Chem. Technol. 12 (1978) 9.

    Google Scholar 

  30. P. G. Schmidt,J. Appl. Polym. Sci. A1 (1963) 2317.

    Google Scholar 

  31. P. Corradini, V. Petraccone, C. Derosa andG. Guerra,Macromolecules 19 (1986) 2699.

    Google Scholar 

  32. L. T. Drzal, M. J. Rich andP. F. Lloyd,J. Adhes. 16 (1982) 1.

    Google Scholar 

  33. V. Rao andL. T. Drzal,Polym. Compos. 12 (1991) 48.

    Google Scholar 

  34. X. S. Bian, L. Ambrosio, J. M. Kenny, L. Nicolais, E. Occhiello, M. Morra, F. Garbassi andA. T. Dibenedetto,J. Adhes. Sci. Technol. 5 (1991) 377.

    Google Scholar 

  35. J. M. Park andR. V. Subramanian,ibid. 5 (1991) 459.

    Google Scholar 

  36. B. W. Rosen, in “Fiber Composite Materials” (ASM, Metals Park, OH, 1965) Ch. 3.

    Google Scholar 

  37. M. J. Folkes andS. T. Hardwick,J. Mater. Sci. Lett. 6 (1987) 656.

    Google Scholar 

  38. F. S. Cheng, J. L. Kardos andT. L. Tolbert,Soc. Plast. Eng. J. 26 (1970) 62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felix, J.M., Gatenholm, P. Effect of transcrystalline morphology on interfacial adhesion in cellulose/polypropylene composites. J Mater Sci 29, 3043–3049 (1994). https://doi.org/10.1007/BF01117618

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01117618

Keywords

Navigation