Skip to main content
Log in

The fracture process of ultra-high strength polyethylene fibres

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fracture behaviour of ultra-high strength polyethylene fibres has been investigated in dead load tests as well as by electron microscopical observation of the fracture surfaces. It was found that the fracture process in the fibres involves an activation energy of about 60 to 75 kJ mol−1, which implies that the strength is mainly determined by the lateral bond strength between the molecules. Fracture is initiated at surface irregularities, such as kink bands, which leads to the formation of cracks with a fibrillated fracture surface. In this process the individual fibrils are cut through at topological defect regions in such fibrils, containing a relatively high concentration of trapped entanglements and chain ends. The ultimate strength of the polyethylene fibres was found to be inversely proportional to the square root of its diameter. Extrapolation to zero diameter yields a strength of 26 GPa for flawless fibres, which equals the theoretical strength of polyethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Northolt,Polymer 21 (1980) 1199.

    Google Scholar 

  2. J. R. Schaefgen, T. I. Bair, J. W. Ballou, S. L. Kwolek, P. W. Morgan, M. Panar andJ. Zimmerman, “Ultra-High Modulus Polymers”, edited by A. Cifferi and I. M. Ward (Applied Science Publishers, London, 1979) p. 77.

    Google Scholar 

  3. L. S. Singer, “Ultra-High Modulus Polymers”, edited by A. Cifferri and I. M. Ward, (Applied Science Publishers, London, 1979) p. 251.

    Google Scholar 

  4. A. Zwijnenburg andA. J. Pennings,J. Polym. Sci. Polym. Lett. 14 (1976) 339.

    Google Scholar 

  5. J. C. M. Torfs, J. Smook andA. J. Pennings,J. Appl. Polym. Sci. 28 (1983) 57.

    Google Scholar 

  6. B. Kalb andA. J. Pennings,J. Mater. Sci. 15 (1980) 2584.

    Google Scholar 

  7. J. Smook andA. J. Pennings,J. Appl. Polym. Sci. 27 (1982) 2209.

    Google Scholar 

  8. Idem, J. Mater. Sci. 19 (1984) 31.

    Google Scholar 

  9. A. A. Griffith,Phil. Trans. Roy. Soc. London 221 (1921) 163.

    Google Scholar 

  10. H. F. Mark, “Polymer Science and Materials”, edited by A. V. Tobolsky and H. F. Mark, (Wiley-Interscience, New York, 1971) p. 236.

    Google Scholar 

  11. K. E. Perepelkin,Angew. Makromol. Chem. 22 (1972) 181.

    Google Scholar 

  12. A. Kelly, “Strong Solids” (Clarendon Press, Oxford, 1966) p. 7.

    Google Scholar 

  13. D. S. Boudreaux,J. Polym. Sci. Polym. Phys. Ed. 11 (1973) 1285.

    Google Scholar 

  14. B. Crist, M. A. Ratner, A. J. Brower andJ. R. Sabin,J. Appl. Phys. 50 (1979) 6047.

    Google Scholar 

  15. P. Th. v.Duynen, private communication (1983).

  16. G. R. Irwin,J. Appl. Mech. 24 (1957) 361.

    Google Scholar 

  17. E. Orowan, Proceedings of the Symposium on Fatigue and Fracture of Metals (J. Wiley and Sons, New York, 1950) p. 139.

    Google Scholar 

  18. J. G. Williams,Adv. Polym. Sci. 27 (1978) 67.

    Google Scholar 

  19. W. F. Brown andJ. E. Strawley, ASTM STP 410 (American Society for Testing and Materials, Philadelphia, 1966).

    Google Scholar 

  20. H. F. Bueckner, ASTM STP 381 (American Society for Testing and Materials, Philadelphia, 1965) p. 82.

    Google Scholar 

  21. A. V. Tobolsky andH. Eyring,J. Chem. Phys. 11 (1943) 125.

    Google Scholar 

  22. S. N. Zhurkov,Int. J. Fract. Mech. 1 (1965) 311.

    Google Scholar 

  23. S. N. Zhurkov andV. E. Korsukov,J. Polym. Sci. Polym. Phys. Ed. 12 (1974) 385.

    Google Scholar 

  24. D. N. Backman andK. L. De Vries,J. Polym. Sci. A17 (1969) 2125.

    Google Scholar 

  25. S. N. Zhurkov, V. A. Zakrevskyi andV. E. Kuksenko,ibid. A2 10 (1972) 1509.

    Google Scholar 

  26. G. E. R. Lamb,J. Polym. Sci. Polym. Phys. Ed. 20 (1982) 297.

    Google Scholar 

  27. A. Peterlin,Fracture 1 (1977) 471.

    Google Scholar 

  28. D. Campbell andA. Peterlin,J. Polym. Sci. B6 (1968) 481.

    Google Scholar 

  29. A. Peterlin,J. Macromol. Sci. B7 (1973) 705.

    Google Scholar 

  30. E. H. Andrews,Adv. Polym. Sci. 27 (1978) 1.

    Google Scholar 

  31. G. E. R. Lamb andH. D. Weigman,Text. Res. J. 47 (1977) 66.

    Google Scholar 

  32. D. C. Prevorsek andW. J. Lyons,J. Appl. Phys. 35 (1964) 3152.

    Google Scholar 

  33. D. C. Prevorsek,J. Polym. Sci. Symp. 32 (1971) 343.

    Google Scholar 

  34. M. G. Dobb, D. J. Johnson, A. Majeed andB. P. Savaille,Polymer 20 (1979) 1284.

    Google Scholar 

  35. B. D. Coleman,J. Polym. Sci. 20 (1956) 447.

    Google Scholar 

  36. B. D. Coleman andA. G. Knox,Text. Res. J. 27 (1957) 393.

    Google Scholar 

  37. A. S. Krausz andH. Eyring, “Deformation Kinetics” (J. Wiley and Sons, New York, 1975) p. 331.

    Google Scholar 

  38. H. H. Kausch, “Polymer Fracture” (Springer Verlag, Heidelberg, 1980).

    Google Scholar 

  39. J. deCboer, H. J. van den Berg andA. J. Pennings,Polymer in press.

  40. J. Smook, J. C. M. Torfs andA. J. Pennings,Makromol. Chem. 182 (1981) 3351.

    Google Scholar 

  41. J. C. M. Torfs, PhD thesis, State University of Groningen, Groningen, The Netherlands (1983).

    Google Scholar 

  42. J. Smook, P. Alferink andA. J. Pennings, unpublished results.

  43. K. Tashiro, M. Kobayashi andH. Tadokoro,Macromolecules 11 (1978) 914.

    Google Scholar 

  44. A. Posthuma De Boer andA. J. Pennings,J. Polym. Sci. Polym. Phys. Ed. 14 (1976) 187.

    Google Scholar 

  45. D. J. Johnson,Phil. Trans. Roy. Soc. London A294 (1980) 443.

    Google Scholar 

  46. A. J. Pennings andZ. Zwijnenburg,J. Polym. Sci. Polym. Phys. Ed. 17 (1979) 1011.

    Google Scholar 

  47. A. Peterlin,J. Macromol. Sci. Phys. B19 (1981) 409.

    Google Scholar 

  48. P. F. van Hutten andA. J. Pennings, to be published.

  49. B. Wunderlich, “Macromolecular Physics”, Vol. 2, (Academic Press, New York, 1973) p. 392.

    Google Scholar 

  50. D. H. Reneker,J. Polym. Sci. 59 (1962) S39.

    Google Scholar 

  51. J. Smook andA. J. Pennings, to be published.

  52. S. K. Bhateja,J. Macromol. Sci. Phys. B22 (1983) 159.

    Google Scholar 

  53. J. A. Stamhuis, PhD thesis, State University of Groningen, Groningen, The Netherlands (1979).

    Google Scholar 

  54. D. T. Turner,Polymer 23 (1982) 626.

    Google Scholar 

  55. P. Prentice,ibid. 24 (1983) 344.

    Google Scholar 

  56. T. Pakula andE. W. Fischer,J. Polym. Sci. Polym. Phys. Ed. 19 (1981) 1705.

    Google Scholar 

  57. L. Jarecki andD. J. Meier,J. Polym. Sci. Polym. Phys. Ed. 17 (1979) 1611.

    Google Scholar 

  58. V. A. Marichin, L. P. Mjasnikova andZ. Pelzbauer,J. Macromol. Sci. Phys. B22 (1983) 111.

    Google Scholar 

  59. D. N. Batchelder, C. Galiotis, R. T. Read andR. J. Young, Proceedings of the Conference on Deformation, Yield and Fracture of Polymers, Cambridge (1982) p. 21.

  60. V. M. Nadkarni andJ. M. Schultz,J. Polym. Sci. Phys. Ed. 15 (1979) 2151.

    Google Scholar 

  61. J. Friedel, “High Strength Materials”, edited by V. F. Zackay (J. Wiley and Sons, New York, 1965) p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smook, J., Hamersma, W. & Pennings, A.J. The fracture process of ultra-high strength polyethylene fibres. J Mater Sci 19, 1359–1373 (1984). https://doi.org/10.1007/BF01120049

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01120049

Keywords

Navigation