Skip to main content
Log in

Topographic EEG mapping in cerebrovascular disease

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

Topographic EEG based on the power spectral data were correlated with cortical CBF and CMRO2 which were provided by positron emission tomography (PET) in patients with cerebral infarction. Delta and theta activities correlated negatively with CBF and CMRO2 whereas alpha activity correlated positively. For delta activity, both absolute (AP) and relative power (RP) showed significant correlation with CBF and CMRO2. For alpha activity, RP showed closer correlation with CBF and CMRO2 than did AP. The z-scores for these power data also showed significant correlation with the PET data although the degree of correlations did not improved even with the z-score. Topographic EEG images including AP, RP and their z-score maps well corresponded with the PET images: z-score maps were considered to be useful tool in topographical extraction of the features of the EEG power data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, R.H., Correia, J.A. and Alpert, N.M. Positron imaging in ischemic stroke disease using compounds labeled with oxygen-15. Initial results and clinicopathologic correlations. Arch. Neurol., 1981, 38: 537–543.

    Google Scholar 

  • Ackerman, R.H., Alpert, N.M., Correia, J.A., Finklestein, S., Davis, S.M., Kelley, R.E., Donnan, G.A., D'Alton, J.G. and Taveras, J.M. Positron Imaging in ischemic stroke disease. Ann. Neurol., 1984, 15(Suppl.): S126–130.

    Google Scholar 

  • Baron, J.C., Bousser, M.G., Comar, D., and Castaigne, P. "Crossed cerebellar diaschisis" in human supratentorial brain infarction. Ann. Neurol., 1980, 8: 128.

    Google Scholar 

  • Baron, J.C. Local interrelationship of cerebral oxygen consumption and glucose utilization in normal subjects and ischemic stroke patients: A positron tomography study. J. Cereb. Blood Flow Metab., 1984, 4: 141–149.

    Google Scholar 

  • Berger, H. Das Elektroenkephalogramm des Menschen. Nova Acta Leop., 1938, 6: 173–309.

    Google Scholar 

  • Buchsbaum, M.S., Kessler, R., King, A., Johnson, J. and Cappelletti, J. Simultaneous cerebral glucography with positron emission tomography and topographic electroencephalography. In: G. Pfurtscheller, E.J. Jonkman and F.H. Lopes da Silva (Eds.), Brain Ischemia: Quantitative EEG and Imaging Techniques, Progress in Brain Research, Elsevier, Amsterdam, 1984, 62: 263–269.

    Google Scholar 

  • Dondey, M. and Gaches, J. Remarques a propos du diagnostic E.E.G. dans les accidents vasculaires cerebreaux. Rev. Neurol., 1958, 99: 232–234.

    Google Scholar 

  • Farbrot, O. Electroencephalographic study in cases of cerebrovascular accidents (preliminary report). Electroenceph. Clin. Neurophysiol., 1954, 6: 678–681.

    Google Scholar 

  • Faure, J. and Morin, G.L. Contribution a I'etude electroencephalographique de la pathologie vasculaire cerebrale. Rev. Neurol., 1952, 87: 203–206.

    Google Scholar 

  • Fujishima, M., Tanaka, K., Takeya, Y. and Omae, T. Bilatertal reduction of hemispheric blood flow in patients with unilateral cerebral infarction. Stroke, 1974, 5: 648–653.

    Google Scholar 

  • Gibbs, F.A and Gibbs, E.L. Atlas of Electroencephalography. Addison-Wesley, Cambridge, 1941: 152.

    Google Scholar 

  • Green, R.L. and Wilson, W.P. Asymmetries of beta-activity in epilepsy, brain tumor, and cerebrovascular disease. Electroenceph. Clin. Neurophysiol., 1961, 13: 75–78.

    Google Scholar 

  • Hoedt-Rasmussen, K. and Skinhoj, E. Transneural depression of the cerebral hemispheric metabolism in man. Acta. Neurol. Scand., 1964, 40: 41–46.

    Google Scholar 

  • Hyodo, A., Mizukami, M., Kawase, T., Nagata, K., Yunoki, K., Yamaguchi, K. Postoperative evaluation of extracranial-in-tracranial arterial bypass by means of ultrasonic quantitative flow measurement and computed mapping of the electroencephalogram. Neurosurg. 1984, 11: 264–272.

    Google Scholar 

  • Ingvar, D.H., Soderberg, U. A new method for measuring cerebral blood flow in relation to the electroencephalogram. Electroenceph. Clin. Neurophysiol., 1956, 8: 403–412.

    Google Scholar 

  • Ingvar, D.H. The pathophysiology of occlusive cerebrovascular disorders related to neuroradiological findings, EEG and measurements of regional cerebral blood flow. Acta. Neurol. Scand., 1967, 43(Suppl. 31): 93–107.

    Google Scholar 

  • Ingvar, D.H. and Sulg, I.A. Regional cerebral blood flow and EEG frequency content in man. Scand. J. Clin. Invest., 1969, 23(Suppl. 109): 47–66.

    Google Scholar 

  • Ingvar, D.H., Sjolund, B. and Ardo, A. Correlation between dominant EEG frequency, cerebral oxygen uptake and blood flow. Electroenceph. Clin. Neurophysiol., 1976, 41: 405–420.

    Google Scholar 

  • Jackal, R.A., Dhaduk, V., Hooker, M., Mawhinney-Hee, M., Harner, R.N. Computed EEG topography in acute stroke. Neurology, 1987, 37(Suppl 1): 364.

    Google Scholar 

  • Jones, E.V. and Baguchi, B.K. Electroencephalographic findings in verified thrombosis of major cerebral arteries (14 cases). Mich. Med. Bull., 1951, 17: 295–310.

    Google Scholar 

  • Jonkman, E.J. Cerebral blood flow (CBF) and electrical activity (EEG). In: J.M. Minderhoud (ed), Cerebral Blood Flow, Basic knowledge and clinical implications. Excerpta Medica, Amsterdam, 1981, 202–222.

    Google Scholar 

  • Kempinsky, W.H. Experimental study of distant effects of acute focal brain injury. Arch. Neurol. Psychiat. 1958, 79: 376–389.

    Google Scholar 

  • Kuhl, E.D., Phelps, M.E., Kowell, A.P., Metter, E.J., Selin, C. and Winter, J. Effects of stroke on local cerebral metabolism and perfusion: mapping by emission computed tomography of 18FDG and 13NH3. Am. Neurol., 1980, 8: 47–60.

    Google Scholar 

  • Lassen, N.A. The luxury perfusion syndrome and its possible relation to acute metabolic acidosis localized within the brain. Lancet, 1966, 2: 1112–1115.

    Google Scholar 

  • Lenzi, G.L., Frackowiack, R.S.J. and Jones, T. Cerebral oxygen metabolism and blood flow in human cerebral infarction. J. Cereb. Blood Flow Metabol. 1982, 2: 321–335.

    Google Scholar 

  • Lecasble, R. and Farbrot, O. Asymmetries du rhythm de base dans les accidents vascularies cerebraux. Rev. Neurol., 1952, 87: 201.

    Google Scholar 

  • Matsuoka, S., Aragaki, Y., Numaguchi, K. and Ueno, S. Effect of dexamethasone on electroencephalograms in patients with brain tumors. J. Neurosurg., 1978, 48: 601–608.

    Google Scholar 

  • Melamed, E., Lavy, S., Portnoy, Z., Sadan, S. and Carmon, A. Correlation between cerebral blood flow and EEG frequency in the contralateral hemisphere in acute cerebral infarction. J. Neurol. Sci., 1975, 26: 21–27.

    Google Scholar 

  • Mensikova, Z and Vrbik, J. Synchronous activity in the electroencephalogram of cerebrovascular lesions. Acta Univ. Carol. Med., 1965, 11: 181–202.

    Google Scholar 

  • Meyer, J.S., Sakamoto, K., Akiyama, M., Yoshida, K. and Yoshitake, S. Monitoring cerebral blood flow, metabolism and EEG. Electroenceph. Clin. Neurophysiol., 1967, 23: 497–508.

    Google Scholar 

  • Meyer, J.S., Shinohara, Y., Kanda, T., Fukuuchi, Y., Ericsson, A.D. and Kok, N.K. Diaschisis resulting from acute unilateral cerebral infarction. Arch. Neurol., 1970, 23: 241–247.

    Google Scholar 

  • Nagata, K., Mizukami, M., Araki, G., Kawase T. and Hirano, M. Topographic electroencephalographic study of cerebral infarction using computed mapping of the EEG (CME). J. Cereb. Blood Flow Metab., 1982, 2: 79–88.

    Google Scholar 

  • Nagata, K., Yunoki, K., Araki, G and Mizukami, M. Topographic electroencephalographic study of transient ischemic attacks. Electroenceph. Clin. Neurophysiol., 1984a, 58: 291–301.

    Google Scholar 

  • Nagata, K., Yunoki, M., Araki, G., Mizukami, M. and Hyodo, A. Topographic electroencephalographic study of ischemic cerebrovascular disease. In: G. Pfurtscheller, E.J. Jonkman and F.H. Lopes da Silva (Eds.). Brain Ischemia: Quantitative EEG and Imaging Techniques, Progress in Brain Research, Elsevier, Amsterdam, 1984b, 62: 271–286.

    Google Scholar 

  • Nagata, K., Gross, C.E., Kindt, G.W., Geier, J.M., Adey, G.R. Topographic electroencephalographic study with power ratio index mapping in patients with malignant brain tumors. Neurosurgery, 1985, 17: 613–619.

    Google Scholar 

  • Nagata, K., Tagawa, K., Shishido, F. and Uemura, K. Topographic EEG correlates of cerebral blood flow and oxygen consumption in patients with neuropsychological disorders. In: F.H. Duffy (Ed.), Topographic Mapping of Brain Electrical Activity. Butterworth, Boston, 1986a, 363–377.

    Google Scholar 

  • Nagata, K., Tagawa, K., Nara, M., Shishido, F. and Uemura, K. Quantitative EEG correlates of cerebral blood flow and oxygen consumption in brain ischemia. II. Topography of power ratio index (PRI). In: S. Matsuoka, T. Soejima and A. Yokota (Eds.), Clinical Topographic Electroencephalography and Evoked potential. Shindan-to-Chiryo, Tokyo, 1986b, 109–116.

    Google Scholar 

  • Nagata, K. Topographic EEG in brain ischemia - Correlation with blood flow and metabolism. Brain topography, 1: 97–106, 1988a.

    Google Scholar 

  • Nagata, K., Tagawa, K., Hiroi, S., Nara, M., Shishido, F., Uemura, K. Quantitative EEG and positron emission tomography in brain ischemia. In: G. Pfurtscheller and F.H. Lopes da Silva (Ed.), Functional Brain Imaging. Hans Huber, Bern, 1988b. 239–250.

    Google Scholar 

  • Nagata, K., Tagawa, K., Hiroi, S., Shishido, F., Uemura K. Electroencephalographic correlates of blood flow and oxygen metabolism provided by positron emission tomography in patients with cerebral infarction. Electroenceph. Clin. Neurophysiol. 72: 16–30, 1989.

    Google Scholar 

  • Nuwer, M.R., Jordan, S.E., and Ahn, S.S. Evaluation of stroke using EEG frequency analysis and topographic mapping. Neurology, 1987, 37: 1153–1159.

    Google Scholar 

  • Obrist, W.D., Sokoloff, L., Lassen, N.A., Lane, M.H., Butler, R.N. and Feinberg, I. Relation of EEG to cerebral blood flow and metabolism in old age. Electroenceph. Clin. Neurophysiol., 1963, 15: 610–619.

    Google Scholar 

  • Rohmer, F., Kurz, D. and Kiffer, A. Etude critique del'activite E.E.G. dans les syndromes vasculaires du tronc cerebral. Rev. Neurol., 1965, 113: 278–284.

    Google Scholar 

  • Shishido, F., Uemura, K., Inugami, A., Ogawa, T., Kanno, I., Murakami, M., Tagawa and K., Yasui, N. Remote effects in MCA territory ischemic infarction: A study of regional cerebral blood flow and oxygen metabolism using positron computed tomography and 15O labeled gases. Radiation Medicine (Tokyo), 1987, 5: 36–41.

    Google Scholar 

  • Strauss, H. and Greenstein, L. The electroencephalogram in cerebrovascular disease. Arch. Neurol. Psychiat., 1948, 59: 395–403.

    Google Scholar 

  • Strauss, HG., Ostow, M., Greenstein, D.L. and Lewyn, S. Temporal slowing as a source of error in electroencephalographic localization. J. Mt. Sinai Hosp. 1955, 22: 306–316.

    Google Scholar 

  • Sulg, I.A. The quantitated EEG as a measure of brain dysfunction. Scand. J. Clin. Invest., 1969, 23(Suppl.): 1–110.

    Google Scholar 

  • Sulg, I.A., Sotaniemi, K.A., Tolonen, U. and Hokkanen, E. Dependence between cerebral metabolism and blood flow as reflected in the quantitative EEG. In: J. Mendlewics and van H.M. Praag (Eds.), Advanc.Biol. Psychiat., Karger, Basel, 1981, 6: 102–108.

    Google Scholar 

  • Sulg I. Quantitative EEG as a measure of brain dysfunction. In: G. Pfurtscheller, E.J. Jonkman and F.H. Lopes da Silva (Eds.), Brain Ischemia: Quantitative EEG and Imaging Techniques, Progress in Brain research, Elsevier, Amsterdam, 1984: 62: 65–84.

    Google Scholar 

  • Tagawa, K., Suzuki, A. and Kutsuzawa, T. Cerebral blood flow and EEG frequency. Clin. Electroenceph. (Tokyo). 1978, 20: 516–525.

    Google Scholar 

  • Tolonen, U. and Sulg, I.A. Comparison of quantitative EEG parameters from four different analysis techniques in evaluation of relationship between EEG and rCBF in brain infarction. Electroenceph. Clin. Neurophysiol., 1981, 51: 177–185.

    Google Scholar 

  • van der Drift, J.H.A., Visser, S.L., Jonkman, E.J., Steen, V.D. Correlations and discrepancies between clinical aspects, EEG and CT brainscan data in ischemic brain disease. In: H. Lechner and A. Aranibar (Eds.), EEG and Clinical Neurophysiology. Excerpta Medica, Amsterdam, 1980, 163–172.

    Google Scholar 

  • Van Huffelen, A.C. Quantitative electroencephalography in cerebral ischemia. TNO Research Unit for Clinical Neurophysiology, 1980, The Hague.

  • Van Huffelen, A.C., Poortvliet, D.C.J, Van der Wulp, C.J.M. Quantitative electroencephalography in cerebral ischemia. Detection of abnormalities in "normal" EEGs. In: G. Pfurtscheller, E.J. Jonkman and F.H. Lopes da Silva (Eds.), Brain Ischemia: Quantitative EEG and Imaging Techniques, Progress in Brain Research, Elsevier, Amsterdam, 1984, 62: 3–28.

    Google Scholar 

  • Yamakami, I., Yamaura, A., Nakamura, T., Isobe, K. Non-invasive follow-up studies of stroke patients with STA-MCA anastomosis; computerized topography of EEG and 133Xe inhalation rCBF measurement. In: G. Pfurtscheller, E.J. Jonkman and F.H. Lopes da Silva (Eds.), Brain Ischemia: Quantitative EEG and Imaging Techniques, Progress in Brain Research, Elsevier, Amsterdam, 1984, 62: 107–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagata, K. Topographic EEG mapping in cerebrovascular disease. Brain Topogr 2, 119–128 (1989). https://doi.org/10.1007/BF01128849

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01128849

Keywords

Navigation