Skip to main content
Log in

Mathematical analysis of a two-phase continuum mixture theory

  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this paper, we study the mathematical structure of a continuum reactive mixture model of the combustion of granular energetic materials. We obtain and classify the wave fields associated with this description. This analysis shows that this system of hyperbolic equations becomes degenerate when the relative flow is locally sonic. We derive the corresponding Riemann invariants and construct simple wave solutions. We also discuss special discontinuous solutions of the system of equations. For fixed upstream conditions, different downstream states are possible when the relative velocities exceed the speed of the sound gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

s (solid),g (gas) subscript to indicate the phase

v a :

velocity of phasea

v sg :

v s -v g

P a :

material density

V a :

specific volume

P a :

pressure

T a :

temperature

e a :

internal energy

η a :

entropy

h a :

enthalpy =e a +P a /P a

ψ a :

Helmholtz free energy =e a -T a η a

φ a :

volume fraction

β a :

configuration pressure =\(\phi _a \rho _a \left( {\frac{{\partial \psi _a }}{{\partial \phi _a }}} \right)_{\rho _a ,T_a }\)

c a :

speed of sound =\(\left( {\frac{{\partial p_a }}{{\partial \rho _a }}} \right)_{\eta _a ,\phi _a }^{1/2}\)

Г a :

Grüneisen coefficient =\(\frac{1}{{\rho _a }}\left( {\frac{{\partial p_a }}{{\partial e_a }}} \right)_{\rho _a ,\phi _a }\)

C a :

rate of mass production

m a :

rate of momentum production

e a :

rate of energy production

δ:

drag coefficient

h :

heat transfer coefficient

k a :

thermal conductivity

μ c :

compaction viscosity

F :

φ s φ g [p s p g β s ]/μ c

References

  1. Truesdell, C. and R. Toupin: The Classical Field Theories, Handbuch der Physik (Ed. S. Flugge), Vol. II/1, p. 226, Berlin: Springer 1960

    Google Scholar 

  2. Truesdell, C.; N. Noll: The Nonlinear Field Theories of Mechanics, Handbuch der Physik (Ed., S. Flugge), Vol. III/3r. Berlin: Springer 1965

    Google Scholar 

  3. Baer, M.; Nunziato, J.: A Two-Phase Mixture Theory for the Deflagrationto-Detonation Transition (DDT) in Reactive Granular Materials. Int. J. Multiphase Flow 12 (1986) 861–889

    Google Scholar 

  4. Stewart, H.; Wendroff, B.: Two-phase flow: models and methods. J. Comp. Phys. 56 (1984) 363–409

    Google Scholar 

  5. Hicks, D.: Well-posedness of the two-phase flow problem, part 2: stability analyses and microstructural models. Report SAND 80-1276, Sandia National Lab.: Albuquerque 1980

    Google Scholar 

  6. Embid, P.; Baer, M.: Modeling two-phase flow of reactive granular materials. IMA Volumes Math. Applications 29 (1991) 58–67

    Google Scholar 

  7. Embid, P.; Hunter, J.; Majda, A.: Simplified asymptotic, equations for the transition to detonation in reactive granular materials. SIAM J. Appl. Math (to appear)

  8. Embid, P.; Majda, A.: An asymptotic theory for hot spot formation and transition to detonation for reactive granular materials. Combust. Flame (to appear)

  9. Baer, M.; Gross, R.; Nunziato, J.; Igel, E.: An experimental and theoretical study of deflagration-to-detonation transition (DDT) in the granular explosive CP. Combust. Flame 65 (1986) 15–30

    Google Scholar 

  10. Baer, M.; Nunziato, I.; Embid, P.: Deflagration to detonation transition in reactive granular materials. Prog. Astronaut. Aeronaut. 135 (1991) 481–512

    Google Scholar 

  11. Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. New York Springer 1984

    Google Scholar 

  12. Lax, P.: Hyperbolic System of Conservation Laws II. Comm. Pure Appl. Math. 10 (1957) 537–566

    Google Scholar 

  13. Courant, R.; Friedrichs, K.: Supersonic Flow and Shock Waves. New York: Springer 1976

    Google Scholar 

  14. Jeffrey, A.; Taniuti, T.: Non-Linear Wave Propagation. New York: Academic Press 1964

    Google Scholar 

  15. Majda, A.: Theory of Conservation Laws, unpublished notes, Princeton University 1984

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Embid, P., Baer, M. Mathematical analysis of a two-phase continuum mixture theory. Continuum Mech. Thermodyn 4, 279–312 (1992). https://doi.org/10.1007/BF01129333

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01129333

Keywords

Navigation