Skip to main content
Log in

Probability mapping: Power and coherence analyses of cognitive processes

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

In recent years different mapping techniques have proved to be an efficient means in studying cognitive processes. Our approach is based on recordings with 19 EEG channels and the computation of spectral parameters. Power and coherence values are obtained from the EEG of control recordings and recordings during the performance of cognitive tasks and are compared for significant differences. The statistical procedures used yield descriptive error probabilities for the rejection of the null hypothesis which are mapped either colour coded or by black and white squares. The usefulness of this method is demonstrated on a mental cube rotation study involving 31 students, 13 males and 18 females. One essential result during the performance of this test is an increase of theta power only in females. As far as local coherence and the theta band are concerned, males show increased values right parietally and right temporo-occipitally; opposed to this, in females the left hemisphere is more affected. In the beta bands, local coherence increases in males right parietally and left temporo-occipitally. Contrary to this, in females the parietal increase of local coherence is more accentuated in the left hemisphere but temporo- occipital coherence is increased in the right hemisphere. In both sexes interhemispheric parietal coherence increases during cube rotation suggesting increased functional couplings between the hemispheres. This study demonstrates that the inclusion of the coherence parameter in brain mapping furthers the detection of sex and hemispheric differences during the performance of cognitive tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abt, K. Significance testing of many variables. Neuropsychobiology, 1983, 9:47–51.

    Google Scholar 

  • Amthauer, R. IST 70: Intelligenz-Struktur-Test. Gœttingen, Hogrefe, 1970.

    Google Scholar 

  • Barlow, J.S. Artifact processing (rejection and minimization) in EEG data processing. In: F.A. Lopes da Silva, W. Storm van Leeuwen, A. Remond (Eds.), Handbook of Electroencephal. and clin. Neurophysiol., Revised Series, Vol. 2. Elsevier, 1986, 5–62.

  • Beaumont, J.G., Mayer, A.R. and Rugg, M.D. Asymmetry in EEG alpha coherence and power: effects of task and sex. Electroencephal. clin. Neurophysiol., 1978, 45: 393–401.

    Google Scholar 

  • Berfield, K.A., Ray, W.J., and Newcombe, N. Sex role and spatial ability: an EEG study. Neuropsychologia, 1986, 24(5): 731–735.

    Google Scholar 

  • Bust, J., and Galbraith, G.C. EEG correlates of visual motor practice in man. Electroencephal. clin. Neurophysiol., 1975, 38: 415- 422.

    Google Scholar 

  • Colter, N. and Shaw, J.C. EEG coherence analysis and field dependence. Biol. Psychol., 1982, 15: 215–228.

    Google Scholar 

  • Duffy, F.H., Burchfiel, J.L. and Lombroso, C.T. Brain electrical activity mapping (BEAM): A method for extending the clinical utility of EEG and evoked potential data. Ann. Neurol., 1979, 13: 55–65.

    Google Scholar 

  • Duffy, F.H., Bartels, P.H. and Burchfiel, J.L. Significant probability mapping: an aid in the topographic analysis of brain electrical activity. Electroencephal. clin. Neurophysiol., 1981, 51: 455–462.

    Google Scholar 

  • Earle, B.B. and Pikus, A.A. The effect of sex and task difficulty on EEG alpha activity in association with arithmetic. Biolog. Psychol., 1982, 15: 1–14.

    Google Scholar 

  • Edgington, E.S. Randomization Tests. Marcel Dekker, Inc., New York and Basel, 1980.

    Google Scholar 

  • Etevenon, P., Tortrat, D. and Benkelfat, C. Electroencephalographic cartography. Neuropsychobiology, 7985, 13: 141–146.

    Google Scholar 

  • French, C.Ch. and Beaumont, J.G. A critical review of EEG coherence studies of hemispheric function. Int. J. Psychophysiology, 1984, 1: 241–254.

    Google Scholar 

  • Gevins, A.S. and Cutillo, B.A. Signals of cognition. In: F.A. Lopes da Silva, W. Storm van Leeuwen, and A. Remond, (Eds.), Handbook of Electroencephalography and Clinical Neurophysiol., Revised Series, Vol. 2. Elsevier, 1986, 335–381.

  • Hinrichs, H., Ferber, G., and Sanders, U. EMG Artefakt Erkennung fuer die Verwendung bei der automatischen Routine Analyse des klinischen EEG. Z. EEG. EMG, 1984, 15: 94–98.

    Google Scholar 

  • John, E.R., Prichep, L., Ahn, H., Easton, P., Fridman, J. and Kaye, H. Neurometric evaluation of cognitive dysfunctions and neurological disorders in children. Progress in Neurobiology, 1983, 21: 239–290.

    Google Scholar 

  • Krieglsteiner, S. Hirnelektrische Korrelate der Raümvorstellump. Unpublished thesis, Institute of Psychology, University of Vienna, 1985.

  • Lebart, L., Morineau, A., and Fenelon, J.P. (Eds.), Traitement des donnees statistiques: methodes et programmes. Dunod, Paris, 1982, 709–726.

    Google Scholar 

  • Lehmann, D. Multichannel topography of human alpha EEG fields. Electroencephal. clin. Neurophysiol., 1971, 31: 439–460.

    Google Scholar 

  • Lehmann, D. Spatial analysis of evoked and spontaneous EEG potential field. In: Yamaguchi, Fujisawa, (Eds.), Recent advances in EEG and EMG data processing. Elsevier, Amsterdam, 1981, 117–132.

    Google Scholar 

  • Ornstein, R., Johnstone, J., Herron, J., and Swencionis, Ch. Differential right hemisphere engagement in visuospatial tasks. Neuropsychologia, 1980, 18(1): 49–64.

    Google Scholar 

  • Petsche, H., Pockberger, H., and Rappelsberger, P. Musikrezeption, EEG und musikalische Vorbildung. Z. EEG-EMG, 1985, 16: 183–190.

    Google Scholar 

  • Petsche, H., Rappelsberger, P., and Pockberger, H. EEG Verænderungen beim Lesen. In: H.M. Weinmann, (Ed.), Zugang zum Verstændnis hœherer Hirnfuktionen durch das EEG W. Zuckschwerdt Verlag, Munchen, 1987:59–74.

    Google Scholar 

  • Petsche, H., Rappelsberger, P., and Pockberger, H. Sex differences in the ongoing EEG: probability mapping at rest and during cognitive tasks. In: G. Pfurtscheller, F. A. Lopes da Silva, (Eds.), Quantitative Brain Imaging, Hans Huber, in press.

  • Pfurtscheller, G., Ladurner, G., Maresch, H. and Vollmer, R. Brain electrical activity mapping in normal and ischemic brain. In: G. Pfurtscheller, J. Jonkman, and F. A. Lopes da Silva, (Eds.), Quantitative EEG and Imaging Techniques, Elsevier, Amsterdam, 1984, 287–302.

    Google Scholar 

  • Pockberger, H., Petsche, H., Rappelsberger, P., Zidek, B., and Zapotoczky, H.G. On-going EEG in depression: a topographic spectral analytic pilot study. Electroenceph. clin. Neuropysiol., 1985, 61: 349–358.

    Google Scholar 

  • Pockberger, H., Thau, K., Lovrek, A., Petsche, H., and Rappelsberger, P. Coherence mapping reveals differences in the EEG between psychiatriac patients and healthy persons. In: K. Maurer (Eds.), Topographic Brain Mapping and Evoked Potentials, Springer, in press.

  • Rappelsberger, P., Pockberger, H. and Petsche, H. Computer aided EEG analysis: evaluation of changes during cognitive processes and topographic mapping. EDV in Medizin und Biologie, 1986, 17 (3): 45- 53.

    Google Scholar 

  • Rappelsberger, P., Krieglsteiner, S., Mayerweg, M., Petsche, H., and Pockberger, H. Probability mapping of EEG changes: application to spatial imagination studies. J. clin. Monitoring, 1987, 3(4): 320–322.

    Google Scholar 

  • Ray, W.J., Newcombe, N., Semon, J., and Cole, P.M. Spatial abilities, sex differences and EEG functioning. Neuropsychologia, 1981, 19(5): 719–722.

    Google Scholar 

  • Remond, A. and Offner, F. A new method for EEG display. Electroencephal. clin. Neurophysiol., 1952, 7: 453–460.

    Google Scholar 

  • Rugg, M.D., and Dickens, A.M. Dissociation of alpha and theta activity as a function of verbal and visuo-spatial tasks. Electroencephal. clin. Neurophysiol., 1982, 53: 201–207.

    Google Scholar 

  • Shaw, J.C., O'Connor, K.P. and Ongley, C.O. The EEG as a measure of cerebral functional organization. Br. J. Psychiatry, 1976, 130: 260–264.

    Google Scholar 

  • Shaw, J.C., O'Connor, K.P. and Ongley, O.C. EEG coherence as a measure of cerebral functional organization. In: M.A.B. Brazier, and H. Petsche, (Eds.), Architectonics of the Cerebral Cortex, Raven Press, New York, 1978: 245–256.

    Google Scholar 

  • Sklar, R.L., Hanley, J. and Simmons, W.W. An EEG experiment aimed toward identifying dyslexic children. Nature (London), 1972, 240: 414–416.

    Google Scholar 

  • Tucker, D.M., Dawson, S.L., Roth, D.L. and Penland J.G. Regional changes in EEG power and coherence during cognition: intensive study of two individuals. Behavioral Neurosciences, 1985, 99(3): 564–577.

    Google Scholar 

  • Tucker, D.M., Roth, D.L. and Bait, T.B. Functional connections among cortical regions: topography of EEG coherence. Electroencephal. clin. Neurophysiol., 1986, 63: 242–250.

    Google Scholar 

  • Walter, D.O. Etevenon, P., Pidoux, B., Tortrat, D. and Guillou, S. Computerized topo-EEG spectral maps: difficulties and perspectives. Neuropsychobiology, 1984, 11: 264–272.

    Google Scholar 

  • Walter, W.G., and Shipton, H.W. A new topographic display system. Electroencephal. clin. Neurophysiol., 1951, 3: 281–292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rappelsberger, P., Petsche, H. Probability mapping: Power and coherence analyses of cognitive processes. Brain Topogr 1, 46–54 (1988). https://doi.org/10.1007/BF01129339

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01129339

Keywords

Navigation